Week In Review: Auto, Security, Pervasive Computing


Inflection AI raised $1.3 billion in a new funding round led by Microsoft, Reid Hoffman, Bill Gates, Eric Schmidt, and NVIDIA after raising $225 million in the first round to support the ongoing development of Pi, a “useful, friendly, and fun” AI. In partnership with CoreWeave and NVIDIA, Inflection aims to build the world’s largest AI cluster, comprised of 22,000 NVIDIA H100 Tensor Core ... » read more

Chip Industry’s Technical Paper Roundup: June 27


New technical papers added to Semiconductor Engineering’s library this week. [table id=113 /]   » read more

The Implementation Of Cooperative Collision Avoidance For Connected Vehicles (Ohio State University)


A technical paper titled “Cooperative Collision Avoidance in a Connected Vehicle Environment” was published by researchers at Ohio State University. Abstract: "Connected vehicle (CV) technology is among the most heavily researched areas in both the academia and industry. The vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and vehicle to pedestrian (V2P) communication capabilitie... » read more

Research Bits: May 17


Magnetic storage structures Researchers from The Ohio State University and Universidad Nacional Autonoma de Mexico investigated a new material that could potentially increase the capacity of magnetic storage devices. They identified manganese germanide, an unusual magnetic material in which the magnetism follows helices, similar to the structure of DNA. The structure gives rise to a number ... » read more

Next Generation Reservoir Computing


Abstract: "Reservoir computing is a best-in-class machine learning algorithm for processing information generated by dynamical systems using observed time-series data. Importantly, it requires very small training data sets, uses linear optimization, and thus requires minimal computing resources. However, the algorithm uses randomly sampled matrices to define the underlying recurrent neural n... » read more

Power/Performance Bits: Dec. 14


Improved digital sensing Researchers from Imperial College London and Technical University of Munich propose a technique to improve the capability of many different types of sensors. The method addresses voltage limits in analog-to-digital converters and the saturation that results in poor quality when an incoming signal exceeds those limits. “Our new technique lets us capture a fuller ra... » read more

Power/Performance Bits: June 1


Stronger PUFs Researchers from Ohio State University and Potomac Research propose a new version of physical unclonable functions, or PUFs, that could be used to create secure ID cards, to track goods in supply chains, and as part of authentication applications. "There's a wealth of information in even the smallest differences found on computers chips that we can exploit to create PUFs," sai... » read more

Hybrid Boolean Networks as Physically Unclonable Functions


Abstract: "We introduce a Physically Unclonable Function (PUF) based on an ultra-fast chaotic network known as a Hybrid Boolean Network (HBN) implemented on a field programmable gate array. The network, consisting of N coupled asynchronous logic gates displaying dynamics on the sub-nanosecond time scale, acts as a `digital fingerprint' by amplifying small manufacturing variations during a peri... » read more

Manufacturing Bits: Nov. 3


Zeptosecond measurements A group of researchers have set a new world’s record for the shortest timespan measurement. DESY, Fritz-Haber-Institute and Goethe University Frankfurt have measured how long it takes for a photon to cross a hydrogen molecule. The result? About 247 zeptoseconds. A zeptosecond is a trillionth of a billionth of a second (10-21 seconds). This is said to be the sh... » read more

Power/Performance Bits: May 28


Archival storage Researchers at Harvard University and Northwestern University propose a method of long-lived archival data storage using low-weight molecules. DNA has been explored as a method of archival storage, but the researchers argue that it is inadequate, as the DNA macromolecule is large and requires skilled, repetitive labor to encode and read. Instead, the researchers turned... » read more

← Older posts Newer posts →