Research Bits: June 14


Photonic deep neural network chip Engineers from the University of Pennsylvania built a photonic deep neural network on a 9.3 square millimeter chip they say is faster and more efficient at classifying images, with the ability to process nearly two billion images a second. The chip uses a series of waveguides that form 'neutron layers' mimicking the brain. “Our chip processes information ... » read more

MIT: Stackable AI Chip With Lego-style Design


New technical paper titled "Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence" from researchers at MIT, along with Harvard University, Tsinghua University, Zhejiang University, and others. Partial Abstract: "Here we report stackable hetero-integrated chips that use optoelectronic device arrays for chip-to-chip communication and neuromorphic... » read more

Compact and Tunable Electro-Optic Modulator for Free Space Applications Modulating Light at Gigahertz Speed


New research paper titled "Gigahertz free-space electro-optic modulators based on Mie resonances" from researchers at Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with researchers at the department of Chemistry at the University of Washington. Partial Abstract "Electro-optic modulators are essential for sensing, metrology and telecommunicatio... » read more

Machine Learning-Based Optimization Of Chiral Photonic Nanostructures: Evolution- And Neural Network-Based Design


Chiral photonics opens new pathways to manipulate light-matter interactions and tailor the optical response of metasurfaces and -materials by nanostructuring nontrivial patterns. Chirality of matter, such as that of molecules, and light, which in the simplest case is given by the handedness of circular polarization, have attracted much attention for applications in chemistry, nanophotonics and ... » read more

Two Chip-Scale Photonic Systems For Optical Data Transmission & Microwave Photonics


New research paper "Microcomb-driven silicon photonic systems" from Peking University, UCSB, and Peng Cheng Laboratory. Abstract "Microcombs have sparked a surge of applications over the past decade, ranging from optical communications to metrology. Despite their diverse deployment, most microcomb-based systems rely on a large amount of bulky elements and equipment to fulfil their desir... » read more

How To Create A Physics-Based Laser Compact Model For A Photonic Process Design Kit (PDK)


This paper discusses the importance of accurate laser compact models in photonic process design kits, describes different laser models available in Ansys Lumerical INTERCONNECT, and explains optimal steps to create a laser compact model that includes temperature and noise effects. Click here to access the paper. » read more

Neuromorphic photonic circuit modeling in Verilog-A


Abstract "One of the significant challenges in neuromorphic photonic architectures is the lack of good tools to simulate large-scale photonic integrated circuits. It is crucial to perform simulations on a single platform to capture the circuit’s behavior in the presence of both optical and electrical components. Here, we adopted a Verilog-A based approach to model neuromorphic photonic cir... » read more

Experimental photonic quantum memristor


Abstract "Memristive devices are a class of physical systems with history-dependent dynamics characterized by signature hysteresis loops in their input–output relations. In the past few decades, memristive devices have attracted enormous interest in electronics. This is because memristive dynamics is very pervasive in nanoscale devices, and has potentially groundbreaking applications ranging... » read more

Wavelength Multiplexed Ultralow-Power Photonic Edge Computing


Abstract "Advances in deep neural networks (DNNs) are transforming science and technology. However, the increasing computational demands of the most powerful DNNs limit deployment on low-power devices, such as smartphones and sensors -- and this trend is accelerated by the simultaneous move towards Internet-of-Things (IoT) devices. Numerous efforts are underway to lower power consumption, but ... » read more

Large-area photonic lift-off process for flexible thin-film transistors


Abstract "Fabricating flexible electronics on plastic is often limited by the poor dimensional stability of polymer substrates. To mitigate, glass carriers are used during fabrication, but removing the plastic substrate from a carrier without damaging the electronics remains challenging. Here we utilize a large-area, high-throughput photonic lift-off (PLO) process to rapidly separate polymer f... » read more

← Older posts Newer posts →