Boost High-Performance IC Design Flows With Early Interactive Symmetry Checking


In the realm of high-performance IC (integrated circuit) design, symmetry is not just an aesthetic preference—it’s a critical factor for ensuring proper device functionality, especially in analog and RF designs. Achieving symmetry early in the design process helps to ensure consistent electrical behavior, which is essential for meeting performance goals and maintaining device reliability. H... » read more

Here At Last! Automated Verification Of Heterogeneous 2D/3D Package Connectivity


By Michael Walsh and Jin Hou with Todd Burkholder The heterogeneous integration of multiple ICs in a single package along with high-performance, high-bandwidth memory is critical for many high-performance computing applications. After everything has been heterogeneously integrated and packaged, such designs feature complex connectivity with many hundreds of thousands of connections, making i... » read more

The 3D-IC Multiphysics Challenge Dictates A Shift-Left Strategy


As the industry marches forward in a 3D-IC centric design approach (figure 1), we are facing a new problem. Sometimes referred to as “electro-thermal” or “electro-thermo-mechanical,” it really is the confluence of multiple forms of physics exerting impacts on both the physical manufacture and structure of these multi-die designs and their electrical behavior. Fig. 1: Illustration... » read more

How To Get Accurate Inductance Extraction For Superconductor ICs


By Hossam Sarhan and Dusan Petranovic Supporting the high performance and reliability needed for artificial intelligence (AI), data centers and cloud computing requires powerful and efficient integrated circuits (ICs). More semiconductor companies are considering superconductor ICs for their unique properties that allow ultrafast processing of digital information. These properties include fa... » read more

A New Strategy For Successful Block/Chip Design-Stage Verification


Achieving efficiency in integrated circuit (IC) design while maintaining design quality is not just a goal, but a necessity. Designers constantly strive to strike a balance between ever-tightening time-to-market constraints and the finite resources at their disposal, while ensuring the quality of their designs remains uncompromised. Traditionally, IC design flows have been depicted as a linear ... » read more

Maximizing Efficiency And Productivity: The Benefits Of Shift Left Verification For IP Designers


Intellectual property (IP) designers play a crucial role by creating reusable components that form the building blocks of larger integrated circuit (IC) designs. These components, whether developed in-house or acquired from specialized IP design companies, are essential for providing core functionality such as memory and standard libraries. However, designing and verifying IP is a complex and d... » read more

Let’s Do The (IC Design) Time Warp Again


For the most part, we’ve all been doing integrated circuit (IC) and system-on-chip (SoC) layout the same way for decades. Designers put together the design, be it intellectual property (IP), block, or full chip, then begin running physical verification. For design rule checking (DRC), this process consists of running all appropriate rule checks for the component on all available layouts. The ... » read more

A Shift Left Strategy Is One Part Of A Holistic Approach To IC Design Verification


The whole is more than the sum of its parts. –Aristotle A machine is nothing more than a collection of nuts, bolts, wheels, gears, wires, pipes, chains, and what have you. And yet, when they are all connected up properly, magic happens. Instead of a pile of parts, you have a car, or a dishwasher, or a nuclear reactor. The connections and interactions between all those parts turns the whole... » read more

Why Shift Left?


As every integrated circuit (IC) design company knows, the faster a design can progress from implementation to signoff verification, the better the chances are of meeting tapeout schedules. Meeting tapeout schedules improves a company’s chances of reaching their market targets. But as companies create larger and more complex ICs and move to advanced process nodes, the challenge of achieving t... » read more

Context-Aware Analysis Can Automatically Protect Critical Nets And Devices During Fill Insertion


Context-aware physical verification (PV) is a relatively new addition to traditional PV flows, but it has quickly become a critical and essential technology that addresses the increasing complexity of geometrical checks used in both established and emerging integrated circuit (IC) technologies. Traditional electronic design automation (EDA) verification tools handle either the physical verifica... » read more

← Older posts