Lateral 3 kV AlN SBDs on Bulk AlN Substrates By MOCVD


A new technical paper titled "3 kV AlN Schottky Barrier Diodes on Bulk AlN Substrates by MOCVD" was published by researchers at Arizona State University. Abstract "This letter reports the first demonstration of AlN Schottky diodes on bulk AlN substrates by metalorganic chemical vapor phase deposition (MOCVD) with breakdown voltages exceeding 3 kV. The devices exhibited good rectifying char... » read more

What To Do About Electrostatic Discharge


Electrostatic discharge is a well-understood phenomenon, but it’s becoming more difficult to plan for as single chips are replaced by multiple chips or chiplets in a package, and as the density of components continues to increase with each new node. In both cases, the probability for failure increases unless these sudden shocks are addressed in the design. Dermott Lynch, director of product m... » read more

Big Shifts In Power Electronics Packaging


The power semiconductor market is poised for remarkable growth in the next several years, fueled by the adoption of electric vehicles and renewable energy, but it also driving big changes in the packaging needed to protect and connect these devices. Packaging is playing an increasingly critical role in the transition to higher power densities, enabling more efficient power supplies, power deli... » read more

Addressing Trench Structures And Larger Wafers For Power Devices


Wind power. Rail. Solar energy. And, perhaps most significantly, electric and hybrid vehicles. Together, these four forces are among the major demand drivers for power devices. While silicon (Si) still plays a role in power devices, wide-bandgap compound semiconductors like silicon carbide (SiC) and gallium nitride (GaN) are particularly well-suited for power devices thanks to their higher e... » read more

Benefits Of Using Wireless Communication Technologies In Power Electronics Systems Employing AGDs


A technical paper titled “Wireless Control of Active Gate Drivers for Silicon Carbide power MOSFETs” was published by researchers at Norwegian University of Science and Technology (NTNU). Abstract: "Active Gate Drivers (AGDs) enhance controllability and monitoring of switching devices, especially for fast switching Silicon Carbide (SiC) power Metal-Oxide-Semiconductor Field-Effect Transis... » read more

Optimizing Metal Film Measurement On IGBT And MOSFET Power Devices With Picosecond Ultrasonic Technology


By Johnny Dai with Cheolkyu Kim and Priya Mukundhan In recent years, power semiconductor applications have expanded from industrial and consumer electronics to renewable energy and electric vehicles. Looking to the future, the most promising power semiconductor devices will be insulated gate bipolar transistor (IGBT) and power metal oxide semiconductor field effect transistor (power MOSFET) ... » read more

The Ultimate Guide To PCB Layout For GaN Transistors


In the ever-evolving landscape of power electronics, the emergence of gallium nitride (GaN) transistors has ignited a revolution by offering unparalleled benefits, including remarkable efficiency and power density enhancements. The art of PCB layout has been a crucial component in power electronic design for over four decades now, ever since the advent of switching power supplier. From the ea... » read more

Why Are S-Parameters Superior For Power Module Optimization?


A power module is a high-power switching circuit – used in electric vehicles, renewable energy, photovoltaics, wind, and many more applications – that uses insulated gate bipolar transistors (IGBT) or metal-oxide-semiconductor field-effect transistors as switching elements. This paper discusses the difference in power module simulation using lumped elements and S-Parameters. Using a simple ... » read more

Integration Of S-Parameters For Power Module Verification Into The Engineers’ Design Environment


By Wilfried Wessel (Siemens EDA), Simon Liebetegger (University of Applied Sciences Darmstadt), and Florian Bauer (Siemens EDA) Developing a power module requires enhanced design and verification methods. Currently, multiple iterations are needed to get the design done. Today, design and manufacturing processes are heavily dependent on physical prototypes. The reason for this is the unique s... » read more

Wide Bandgap Semiconductors: What Modeling Challenges Must We Overcome


As power electronics shrink in size, the demands on power, frequency, and efficiency grow exponentially. The semiconductor industry is leaning heavily into wide bandgap materials like gallium nitride (GaN) and silicon carbide (SiC) to help meet these demands. Recent research projects that the global GaN semiconductor devices market will grow at a CAGR of 25.4% from 2023 to 2030. However, the ... » read more

← Older posts Newer posts →