Will An Adhesion Promoter Prevent Delamination?


Power semiconductor packages are used in high temperature, high voltage environments. With the increase of electric vehicles (EVs) and hybrid electric vehicles (HEV) in the automotive market, demands on (and for) power packages have been growing. Packages for automotive applications must pass extensive testing for safety, therefore, packaging reliability is essential. As more semiconductor pack... » read more

48V Applications Drive Power IC Package Options


The manufacturing process and die get most of the attention, but the packaging plays an important part in enabling and limiting performance, manufacturability, particularly when it comes to reliability of power devices. Given the wide range of underlying semiconductor power-device technologies — “basic” silicon, wide-bandgap silicon carbide (SiC) and gallium nitride (GaN), power levels... » read more

Improving Reliability For GaN And SiC


Suppliers of gallium nitride (GaN) and silicon carbide (SiC) power devices are rolling out the next wave of products with some new and impressive specs. But before these devices are incorporated in systems, they must prove to be reliable. As with previous products, suppliers are quick to point out that the new devices are reliable, although there are some issues that can occasionally surface... » read more

Power Semi Wars Begin


Several vendors are rolling out the next wave of power semiconductors based on gallium nitride (GaN) and silicon carbide (SiC), setting the stage for a showdown against traditional silicon-based devices in the market. Power semiconductors are specialized transistors that incorporate different and competitive technologies like GaN, SiC and silicon. Power semis operate as a switch in high-volt... » read more

Silicon Carbide’s Superpowers


As we enter a new computing era driven by the Internet of Things (IoT), Big Data and Artificial Intelligence (AI), demand is growing for more energy-efficient chips. In this context, we usually think about Moore’s Law and reducing the size of transistors. However, advances in power semiconductors are not governed by node size reduction. Silicon power switches, such as MOSFETs and IGBTs, ar... » read more

200mm Cools Off, But Not For Long


After years of acute shortages, 200mm fab capacity is finally loosening up, but the supply/demand picture could soon change with several challenges on the horizon. 200mm fabs are older facilities with more mature processes, although they still churn out a multitude of today’s critical chips, such as analog, MEMS, RF and others. From 2016 to 2018, booming demand for these and other chips ca... » read more

Electric Cars Gain Traction, But Challenges Remain


Battery-powered electric vehicles are expected to reach a milestone in terms of shipments in 2019, but the technology faces several significant hurdles to gain wider adoption in the market. Limited driving range, high costs, battery issues, and a spotty charging infrastructure are the main challenges for battery electric vehicles (BEVs). In addition, there are issues with various power semic... » read more

GaN Power Semi Biz Heats Up


The market for devices based on gallium nitride (GaN) technology is heating up amid the push for faster and more power efficient systems. Today, [getkc id="217" kc_name="GaN"] is widely used in the production of LEDs. In addition, it is gaining steam in the radio-frequency (RF) market. And the GaN-based power semiconductor market finally appears ready to take off, after several false starts ... » read more

What Happened To GaN And SiC?


About five years ago, some chipmakers claimed that traditional silicon-based power MOSFETs had hit the wall, prompting the need for a new power transistor technology. At the time, some thought that two wide-bandgap technologies—gallium nitride (GaN) on silicon and silicon carbide (SiC) MOSFETs—would displace the ubiquitous power MOSFET. In addition, GaN and SiC were supposed to pose a t... » read more

Newer posts →