Revving Up SiC And GaN


Silicon carbide (SiC) and gallium nitride (GaN) are becoming more popular for power electronics, particularly in automotive applications, driving down costs as volumes scale up and increasing the demand for better tools to design, verify, and test these wide-bandgap devices. Both SiC and GaN are proving essential in areas such as battery management in electric vehicles. They can handle much ... » read more

Choose The Right Sensors For Autonomous Vehicles


When the world’s first “motorwagen” was introduced in 1885, the notion that a car would one day drive itself was laughable. Today, assisted and autonomous vehicles are the reality of an age where digital sensors can outperform human ability to perceive motion, distance, and speed. When used together, sensor technologies including camera, lidar, radar, and ultrasonic give vehicles one... » read more

Innovations In Sensor Technology


Sensors are the “eyes” and “ears” of processors, co-processors, and computing modules. They come in all shapes, forms, and functions, and they are being deployed in a rapidly growing number of applications — from edge computing and IoT, to smart cities, smart manufacturing, hospitals, industrial, machine learning, and automotive. Each of these use cases relies on chips to capture d... » read more

Big Changes Ahead For Inside Auto Cabins


The space we occupy inside our vehicles is poised to change from mere enclosure to participant in the driving experience. Whether for safety or for comfort, a wide range of sensors are likely to appear that will monitor the “contents” of the vehicle. The overall approach is referred to as an in-cabin monitoring system (ICMS), but the specific applications vary widely. “In-cabin sensing... » read more

RF/Microwave Technology Driving The Connected Car


In-car networks and advanced driver-assistance systems (ADAS), made possible through wireless sensors, driver-assist radar, vehicle communications, and related electronics, present many design challenges to engineers. Simulation software enables design teams to effectively manage the complex design and integration challenges associated with developing these high-speed and RF-enabled networks. T... » read more

Competing Auto Sensor Fusion Approaches


As today’s internal-combustion engines are replaced by electric/electronic vehicles, mechanical-system sensors will be supplanted by numerous electronic sensors both for efficient operation and for achieving various levels of autonomy. Some of these new sensors will operate alone, but many prominent ones will need their outputs combined — or “fused” — with the outputs of other sensor... » read more

40 GHz VCO and Frequency Divider in 28 nm FD-SOI CMOS Technology for Automotive Radar Sensors


Abstract: "This paper presents a 40 GHz voltage-controlled oscillator (VCO) and frequency divider chain fabricated in STMicroelectronics 28 nm ultrathin body and box (UTBB) fully depleted silicon-on-insulator (FD-SOI) complementary metal-oxide–semiconductor (CMOS) process with eight metal layers back-end-of-line (BEOL) option. VCOs architecture is based on an LC-tank with p-type metal-oxide�... » read more

Radar Wave Propagation Through Materials


This white paper focuses on electromagnetic (EM) wave propagation through materials. For radar systems, this is of interest when radar must pass through walls, or when designing radomes (cover casings for the radar system). In the process of designing a radome, you should always perform full EM simulation. However, the content of this white paper will help you to first estimate whether a radome... » read more

Packaging Technology Needs Of Automotive Radar Sensors Chips


Automotive radar systems are typically composed of an antenna, front-end radar sensor and back-end signal processor. Current state-of-the-art automotive radar systems make use of the latest integrated circuit and a wide range of packaging technologies. Let’s look a bit further into the development of automotive radar sensor chips and the packaging technologies being used as solutions for this... » read more

Sensor Fusion Everywhere


How do you distinguish between background noise and the sound of an intruder breaking glass? David Jones, head of marketing and business development for intuitive sensing solutions at Infineon, looks at what types of sensors are being developed, what happens when different sensors are combined, what those sensors are being used for today, and what they will be used for in the future. » read more

← Older posts Newer posts →