IC Reliability Burden Shifts Left


Chip reliability is coming under much tighter scrutiny as IC-driven systems take on increasingly critical and complex roles. So whether it's a stray alpha particle that flips a memory bit, or some long-dormant software bugs or latent hardware defects that suddenly cause problems, it's now up to the chip industry to prevent these problems in the first place, and solve them when they do arise. ... » read more

In-field In-Mission Reliability Monitoring Based On Deep Data


This paper describes a Deep Data approach to reliability monitoring in advanced electronics, based on degradation as a precursor for failure. By applying machine learning algorithms and analytics to data created by on-chip monitoring IPs (Agents), IC/system health and performance can be continuously monitored, at all stages of the product lifecycle. Realtime degradation analysis of critical par... » read more

Prediction of SRAM Reliability Under Mechanical Stress Induced by Harsh Environments


On the example of a 28nm SRAM array, this work presents a novel reliability study which takes into account the effect of externally applied mechanical stress in circuit simulations. This method is able to predict the bit failures caused by the stress via the piezoresistive effect. The stability of each single SRAM cell is simulated using static noise margin. Finally, the whole array’s behavio... » read more

Analog Reliability Analysis for Mission-Critical Applications


Rapidly increasing electrical content in automobiles is driving the need for revolution in analog integrated circuit (IC) design methodology. Compared to designing for consumer electronics, designing for mission-critical applications—industrial, medical, space, and automotive—requires a different approach to reliability analysis. We will explore how reliability analysis needs to change for ... » read more

Who’s Responsible For Transistor Aging Models?


While there are a number of ways to go about reliability and transistor aging analysis, it is all in large part dependent on fabs and foundries to provide the aging models. The situation is also not entirely clear in the semiconductor ecosystem because the classic over-the-wall mentality between design and manufacturing still exists. And unfortunately this wall is bi-directional. Not only... » read more

Transistor-Level Verification Returns


A few decades ago, all designers did transistor-level verification, but they were quite happy to say goodbye to it when standard cells provided isolation at the gate-level and libraries provided all of the detailed information required, such as timing. A few dedicated people continued to use the technology to provide those models and libraries and the most aggressive designs that wanted to stri... » read more