Monitoring Chips On Many Levels


Monitoring is an important trend for optimizing yield, performance, and uptime in systems that use complex integrated circuits, but not all monitoring is the same. In fact, there are multiple levels of monitors. In many cases, they can be used together to help solve problems when something is amiss. They also can be used to help identify who in the supply chain owns the fix. “If the sys... » read more

Demand for IC Resilience Drives Methodology Changes


Applications that demand safety, security, and resilience are driving new ways of thinking about design, verification, and the long-term reliability of chips on a mass scale. The need is growing for chips that can process more data faster, over longer periods of time, and often within a shrinking power budget. That, in turn, is forcing changes at multiple levels, at the architecture, design,... » read more

Hunting For Open Defects In Advanced Packages


Catching all defects in chip packaging is becoming more difficult, requiring a mix of electrical tests, metrology screening, and various types of inspection. And the more critical the application for these chips, the greater the effort and the cost. Latent open defects continue to be the bane of test, quality, and reliability engineering. Open defects in packages occur at the chip-to-substra... » read more

Using 5nm Chips And Advanced Packages In Cars


Semiconductor Engineering sat down to discuss the impact of advanced node chips and advanced packaging on automotive reliability with Jay Rathert, senior director of strategic collaborations at KLA; Dennis Ciplickas, vice president of advanced solutions at PDF Solutions; Uzi Baruch, vice president and general manager of the automotive business unit at OptimalPlus; Gal Carmel, general manager of... » read more

Preventing Chips From Burning Up During Test


It’s become increasingly difficult to manage the heat generated during IC test. Absent the proper mitigations, it’s easy to generate so much heat that probe cards and chips literally can burn up. As a result, implementing temperature-management techniques is becoming a critical part of IC testing. “We talk about systems, saying the system is good,” said Arun Krishnamoorthy, senior... » read more

Predicting And Avoiding Failures In Automotive Chips


Semiconductor Engineering sat down to discuss automotive electronics reliability with Jay Rathert, senior director of strategic collaborations at KLA; Dennis Ciplickas, vice president of advanced solutions at PDF Solutions; Uzi Baruch, vice president and general manager of the automotive business unit at OptimalPlus; Gal Carmel, general manager of proteanTecs' Automotive Division; Andre van de ... » read more

Part Average Tests For Auto ICs Not Good Enough


Part Average Testing (PAT) has long been used in automotive. For some semiconductor technologies it remains viable, while for others it is no longer good enough. Automakers are bracing for chips developed at advanced process nodes with much trepidation. Tight control of their supply chains and a reliance upon mature electronic processes so far have enabled them to increase electronic compone... » read more

Design For Reliability


Circuit aging is emerging as a mandatory design concern across a swath of end markets, particularly in markets where advanced-node chips are expected to last for more than a few years. Some chipmakers view this as a competitive opportunity, but others are unsure we fully understand how those devices will age. Aging is the latest in a long list of issues being pushed further left in the desig... » read more

Modeling PCBs For Common Causes Of Failure


By Theresa Duncan and Michael Blattau When designing printed circuit boards (PCBs), keep in mind the major causes of electronic failure: thermal cycling, vibration, and mechanical shock and drop. You can perform a variety of physical tests to determine how and why electronics fail, however, a much faster and cost-effective solution is PCB modeling and simulation. When simulation is used i... » read more

What Do Feedback Loops For AI/ML Devices Really Show?


AI/ML is being designed into an increasing number of chips and systems these days, but predicting how they will behave once they're in the field is, at best, a good guess. Typically, verification, validation, and testing of systems is done before devices reach the market, with an increasing amount of in-field data analysis for systems where reliability is potentially mission- or safety-criti... » read more

← Older posts Newer posts →