Systems-in-Package: Authenticated Partial Encryption Protocol For Secure Testing (U. of Florida)


A new technical paper titled "GATE-SiP: Enabling Authenticated Encryption Testing in Systems-in-Package" was published by researchers at University of Florida and University of Central Florida. Abstract: "A heterogeneous integrated system in package (SIP) system integrates chiplets outsourced from different vendors into the same substrate for better performance. However, during post-integra... » read more

Simultaneous Bi-Directional Signaling: A Breakthrough Alternative For Multi-Die Assemblies


In designing multi-die systems-in-package, with or without chiplets, it is easy to think of the interconnect between dies as simply analogous to the interconnect between functional blocks on a single die. But this analogy can lead architects and designers into a blind alley from which it becomes impossible to meet system performance and power requirements. The reason lies in fundamental differe... » read more

Integration Hurdles For Analog And RF In Next-Gen Packages


A rapid increase in wireless connectivity and more sensors, coupled with a shift away from monolithic SoCs toward heterogeneous integration, is driving up the amount of analog/RF content in systems and changing the dynamics within a package. Since the early 2000s, the majority of chips used at the most advanced nodes were systems-on-chip (SoCs). All features had to fit into a single planar S... » read more

Fluid Dispensing For Packaging Today’s Devices


Fluid dispensing systems are evolving in order to address the challenges that system-in-package (SiP) and micromechanical systems (MEMS) packages face, especially in regard to tight geometries and assembly processes. These packages, used in smartphones, have become more miniaturized, and as a result, have created added value in the market. However, they include a variety of small dies or dev... » read more

3D Heterogenous Integration: Design And Verification Challenges


Next-generation semiconductor products increasingly rely on vertical integration technologies to drive system density, speed, and yield improvement. Due to the increased coupling effects across multiple physics, co-simulation and co-analysis of these phenomena are critical for a robust chip-package-system design. Advanced 2.5D/3D-IC systems are constructed with multiple dice, interposers, packa... » read more

Heterogeneous Integration Finding Its Footing


Semiconductor Engineering sat down to discuss heterogeneous integration with Dick Otte, president and CEO of Promex Industries; Mike Kelly, vice president of chiplets/FCBGA integration at Amkor Technology; Shekhar Kapoor, senior director of product management at Synopsys; John Park, product management group director in Cadence's Custom IC & PCB Group; and Tony Mastroianni, advanced packagin... » read more

Everyone’s A System Designer With Heterogeneous Integration


The move away from monolithic SoCs to heterogeneous chips and chiplets in a package is accelerating, setting in motion a broad shift in methodologies, collaborations, and design goals that are felt by engineers at every step of the flow, from design through manufacturing. Nearly every engineer is now working or touching some technology, process, or methodology that is new. And they are inter... » read more

Design Complexity In The Golden Age Of Semiconductors


While writing last month's blog that used some of the trend charts we have seen, I noticed that a lot of the data ends in 2020 or earlier, but I was too close to the deadline to sit down and make orderly updates to some of the charts. Working day-to-day in the area of SoC integration and networks-on-chips (NoCs), the classic chart based on Karl Rupp's now 50 years of processor data that overlay... » read more

Chiplets: Deep Dive Into Designing, Manufacturing, And Testing


Chiplets are a disruptive technology. They change the way chips are designed, manufactured, tested, packaged, as well as the underlying business relationships and fundamentals. But they also open the door to vast new opportunities for existing chipmakers and startups to create highly customized components and systems for specific use cases and market segments. This LEGO-like approach sounds ... » read more

Photonic Debond: Scalability And Advancements


Advanced packaging technology has continuously evolved over the past 10-20 years to become a major driving force in improving integrated circuit (IC) performance. This improvement in IC performance is assisted by the ability to place specialized components near each other for shorter interconnects in the IC packages. Temporary bond and debond (TB/DB) is an enabling technique for this work. TB/D... » read more

← Older posts