Architecture, Materials And Software


AI, machine learning and autonomous vehicles will require massive improvements in performance, at the same power consumption level (or better), over today's chips. But it's obvious that the usual approach of shrinking features to improve power/performance isn't going to be sufficient. Scaling will certainly help, particularly on the logic side. More transistors are needed to process a huge i... » read more

High-Performance Memory Challenges


Designing memories for high-performance applications is becoming far more complex at 7/5nm. There are more factors to consider, more bottlenecks to contend with, and more tradeoffs required to solve them. One of the biggest challenges is the sheer volume of data that needs to be processed for AI, machine learning or deep learning, or even in classic data center server racks. “The design... » read more

New Nodes, Materials, Memories


Ellie Yieh, vice president and general manager of Advanced Product Technology Development at [getentity id="22817" e_name="Applied Materials"], and head of the company's Maydan Technology Center, sat down with Semiconductor Engineering to talk about challenges, changes and solutions at advanced nodes and with new applications. What follows are excerpts of that conversation. SE: How far can w... » read more

PowerDown: Power Efficiency


Power Down Semiconductor wants to make the batteries in smartphones and IoT devices last 10 times longer by not wasting power they’ve already used. Every time an intelligent device has a thought, it pulls power from a battery and sends it through its maze of wires and millions of gates to create a O or a 1 at key points in the control and logic circuits. “Think about how much energy... » read more

A New Memory Contender?


Momentum is building for a new class of ferroelectric memories that could alter the next-generation memory landscape. Generally, ferroelectrics are associated with a memory type called ferroelectric RAMs (FRAMs). Rolled out by several vendors in the late 1990s, FRAMs are low-power, nonvolatile devices, but they are also limited to niche applications and unable to scale beyond 130nm. While... » read more

Four Foundries Back MRAM


Four major foundries plan to offer MRAM as an embedded memory solution by this year or next, setting the stage for what finally could prove to be a game-changer for this next-generation memory technology. GlobalFoundries, Samsung, TSMC and UMC plan to start offering spin-transfer torque magnetoresistive RAM (ST-MRAM or STT-MRAM) as an alternative or a replacement to NOR flash, possibly start... » read more

What Is Spin Torque MRAM?


The memory market is going in several different directions at once. On one front, the traditional memory types, such as DRAM and flash, remain the workhorse technologies. Then, several vendors are readying the next-generation memory types. As part of an ongoing series, Semiconductor Engineering will explore where the new and traditional memory technologies are heading. For this segment, P... » read more

Rethinking Computing Fundamentals


New compute architectures—not just new chips—are becoming a common theme in Silicon Valley these days. The whole semiconductor industry is racing to find the fastest, cheapest, lowest-power approach to processing. The drivers of this shift are well documented. Moore's Law is slowing down, in part because it's becoming more difficult to route signals across an SoC at the latest process no... » read more

Enabling Magnetic Tunnel Junctions Array Processing For Embedded STT MRAM


The semiconductor industry is entering a new era of next-generation memory technologies, with several major inflections taking shape. Among these is the emergence of Magnetic RAM (MRAM). Over several posts, I’ll provide background on what is driving the adoption of MRAM, highlight some of the initial challenges and discuss progress on making STT MRAM commerically viable. Today, a typical m... » read more

New Memories And Architectures Ahead


Memory dominates many SoCs, and it is rare to hear that a design contains too much memory. However, memories consume a significant percentage of system power, and while this may not be a critical problem for many systems, it is a bigger issue for Internet of Things ([getkc id="76" kc_name="IoT"]) edge devices where total energy consumption is very important. Memory demands are changing in al... » read more

← Older posts