In-Memory Vs. Near-Memory Computing


New memory-centric chip technologies are emerging that promise to solve the bandwidth bottleneck issues in today’s systems. The idea behind these technologies is to bring the memory closer to the processing tasks to speed up the system. This concept isn’t new and the previous versions of the technology fell short. Moreover, it’s unclear if the new approaches will live up to their billi... » read more

Comparative Stochastic Process Variation Bands For N7, N5, And N3 At EUV


By Alessandro Vaglio Preta, Trey Gravesa, David Blankenshipa, Kunlun Baib, Stewart Robertsona, Peter De Bisschopc, John J. Biaforea a) KLA-Tencor Corporation, Austin, TX 78759, U.S.A. b) KLA-Tencor Corporation, Milpitas, CA 95035, U.S.A. c) IMEC, Kapeldreef 75, 3000, BE ABSTRACT Stochastics effects are the ultimate limiter of optical lithography technology and are a major concern for n... » read more

Pushing AI Into The Mainstream


Artificial intelligence is emerging as the driving force behind many advancements in technology, even though the industry has merely scratched the surface of what may be possible. But how deeply AI penetrates different market segments and technologies, and how quickly it pushes into the mainstream, depend on a variety of issues that still must be resolved. In addition to a plethora of techni... » read more

Using Memory Differently


Chip architects are beginning to rewrite the rules on how to choose, configure and use different types of memory, particularly for chips with AI and some advanced SoCs. Chipmakers now have a number of options and tradeoffs to consider when choosing memories, based on factors such as the application and the characteristics of the memory workload, because different memory types work better tha... » read more

Week in Review: IoT, Security, Auto


Internet of Things Tony Franklin, Intel’s general manager for Internet of Things Segments, is interviewed by Lorin Fries on how the chipmaker is helping to develop smart farming applications. “We focus primarily on high-performance computer technologies, as well as communication technologies, which have great applicability for food systems. We work closely with a broad ecosystem of partner... » read more

Embedded Phase-Change Memory Emerges


The next-generation memory market for embedded applications is becoming more crowded as another technology emerges in the arena—embedded phase-change memory. Phase-change memory is not new and has been in the works for decades. But the technology has taken longer to commercialize amid a number of technical and cost challenges. Phase-change memory, a nonvolatile memory type that stores data... » read more

What’s the Right Path For Scaling?


The growing challenges of traditional chip scaling at advanced nodes are prompting the industry to take a harder look at different options for future devices. Scaling is still on the list, with the industry laying plans for 5nm and beyond. But less conventional approaches are becoming more viable and gaining traction, as well, including advanced packaging and in-memory computing. Some option... » read more

Foundries See Growth, New Issues In 2019


The silicon foundry business is poised for growth in 2019, although the industry faces several challenges across a number of market segments next year. Generally, foundry vendors saw steady growth in 2018, but many are ending the year on a sour note. Weak demand for Apple’s new iPhone XR and a downturn in the cryptocurrency market have impacted several IC suppliers and foundries, causing t... » read more

Foundries Prepare For Battle At 22nm


After introducing new 22nm processes over the last year or two, foundries are gearing up the technology for production—and preparing for a showdown. GlobalFoundries, Intel, TSMC and UMC are developing and/or expanding their efforts at 22nm amid signs this node could generate substantial business for applications like automotive, IoT and wireless. But foundry customers face some tough choic... » read more

Prediction of SRAM Reliability Under Mechanical Stress Induced by Harsh Environments


On the example of a 28nm SRAM array, this work presents a novel reliability study which takes into account the effect of externally applied mechanical stress in circuit simulations. This method is able to predict the bit failures caused by the stress via the piezoresistive effect. The stability of each single SRAM cell is simulated using static noise margin. Finally, the whole array’s behavio... » read more

← Older posts