3.5D: The Great Compromise


The semiconductor industry is converging on 3.5D as the next best option in advanced packaging, a hybrid approach that includes stacking logic chiplets and bonding them separately to a substrate shared by other components. This assembly model satisfies the need for big increases in performance while sidestepping some of the thorniest issues in heterogeneous integration. It establishes a midd... » read more

Addressing Quantum Computing Threats With SRAM PUFs


You’ve probably been hearing a lot lately about the quantum-computing threat to cryptography. If so, you probably also have a lot of questions about what this “quantum threat” is and how it will impact your cryptographic solutions. Let’s take a look at some of the most common questions about quantum computing and its impact on cryptography. What is a quantum computer? A quantum comput... » read more

SRAM Security Concerns Grow


SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down. This is particularly alarming as the leading edge of design shifts from planar SoCs to heterogeneous systems in package, such as those used in AI or edge processing, where chiplets frequently have their own memory hi... » read more

A Design And Benchmarking Study Of CAM At 7nm In The Context Of Similarity Search Applications (Georgia Tech)


A technical paper titled “Cross-layer Modeling and Design of Content Addressable Memories in Advanced Technology Nodes for Similarity Search” was published by researchers at the Georgia Institute of Technology. Abstract: "In this paper we present a comprehensive design and benchmarking study of Content Addressable Memory (CAM) at the 7nm technology node in the context of similarity search... » read more

New Memory Architecture For Local Differential Privacy in Hardware


A technical paper titled "Two Birds with One Stone: Differential Privacy by Low-power SRAM Memory" was published by researchers at North Carolina State University, University of South Alabama, and University of Tennessee. Abstract "The software-based implementation of differential privacy mechanisms has been shown to be neither friendly for lightweight devices nor secure against side-channe... » read more

SRAM Scaling Issues, And What Comes Next


The inability of SRAM to scale has challenged power and performance goals forcing the design ecosystem to come up with strategies that range from hardware innovations to re-thinking design layouts. At the same time, despite the age of its initial design and its current scaling limitations, SRAM has become the workhorse memory for AI. SRAM, and its slightly younger cousin DRAM, have always co... » read more

CiM Integration For ML Inference Acceleration


A technical paper titled “WWW: What, When, Where to Compute-in-Memory” was published by researchers at Purdue University. Abstract: "Compute-in-memory (CiM) has emerged as a compelling solution to alleviate high data movement costs in von Neumann machines. CiM can perform massively parallel general matrix multiplication (GEMM) operations in memory, the dominant computation in Machine Lear... » read more

SRAM’s Role In Emerging Memories


Experts at the Table — Part 3: Semiconductor Engineering sat down to talk about AI, the latest issues in SRAM, and the potential impact of new types of memory, with Tony Chan Carusone, CTO at Alphawave Semi; Steve Roddy, chief marketing officer at Quadric; and Jongsin Yun, memory technologist at Siemens EDA. What follows are excerpts of that conversation. Part one of this conversation can be ... » read more

Mixed SRAM And eDRAM Cell For Area And Energy-Efficient On-Chip AI Memory (Yale Univ.)


A new technical paper titled "MCAIMem: a Mixed SRAM and eDRAM Cell for Area and Energy-efficient on-chip AI Memory" was published by researchers at Yale University. Abstract: "AI chips commonly employ SRAM memory as buffers for their reliability and speed, which contribute to high performance. However, SRAM is expensive and demands significant area and energy consumption. Previous studies... » read more

The Uncertain Future Of In-Memory Compute


Experts at the Table — Part 2: Semiconductor Engineering sat down to talk about AI and the latest issues in SRAM with Tony Chan Carusone, chief technology officer at Alphawave Semi; Steve Roddy, chief marketing officer at Quadric; and Jongsin Yun, memory technologist at Siemens EDA. What follows are excerpts of that conversation. Part one of this conversation can be found here and part 3 is h... » read more

← Older posts