Technical Paper Round-Up: March 15


Research is expanding across a variety of semiconductor-related topics, from security to flexible substrates and chiplets. Unlike in the past, when work was confined to some of the largest universities, that research work is now being spread across a much broader spectrum of schools on a global basic, including joint research involving schools whose names rarely appeared together. Among the ... » read more

Week In Review: Auto, Security, Pervasive Computing


Automotive The U.S. Federal Trade Commission (FTC) sued Nvidia to block the company’s $40 billion acquisition of Arm. The FTC said in a press statement that “the proposed vertical deal would give one of the largest chip companies control over the computing technology and designs that rival firms rely on to develop their own competing chips. … the combined firm would have the means and in... » read more

SARA: Scaling a Reconfigurable Dataflow Accelerator


Yaqi Zhang, Nathan Zhang, Tian Zhao, Matt Vilim, Muhammad Shahbaz, Kunle Olukotun (Stanford) Abstract—"The need for speed in modern data-intensive workloads and the rise of “dark silicon” in the semiconductor industry are pushing for larger, faster, and more energy and areaefficient architectures, such as Reconfigurable Dataflow Accelerators (RDAs). Nevertheless, challenges remain in d... » read more

Chasing After Carbon Nanotube FETs


Carbon nanotube transistors are finally making progress for potential use in advanced logic chips after nearly a quarter century in R&D. The question now is whether they will move out of the lab and into the fab. Several government agencies, companies, foundries, and universities over the years have been developing, and are now making advancements with carbon nanotube field-effect transi... » read more

Manufacturing Bits: Aug. 20


Making carbon nanotubes with AI Russia’s Skolkovo Institute of Science and Technology (Skoltech) has developed a method to monitor the growth of carbon nanotubes using an artificial intelligence (AI) technology called machine learning. Skoltech used AI to predict the performance of the synthesis of single-walled carbon nanotubes using a chemical vapor deposition (CVD) process. The tec... » read more

Kumu Networks: Full Duplex on One Channel


Kumu Networks is in an enviable position fitting today’s requirements for radio-frequency system designs. The Sunnyvale, Calif., startup, incorporated in 2011 and coming together the following year, has developed self-interference cancellation technology, enabling radios to send and receive signals at the same time on the same channel or on an adjacent channel. This full-duplex technology has... » read more

Power/Performance Bits: Jan. 2


High-temp electronics Researchers at Purdue University, UC Santa Cruz, and Stanford developed a semiconducting plastic capable of operating at extreme temperatures. The new material, which combines both a semiconducting organic polymer and a conventional insulating organic polymer could reliably conduct electricity in up to 220 degrees Celsius (428 F). "One of the plastics transports the ch... » read more

System Bits: Sept. 18


Better AI technique for chemistry predictions CalTech researchers have found a new technique that uses machine learning more effectively to predict how complex chemicals will react to reagents. The tool is a new twist on similar machine learning techniques to find more effective catalysts without having the time-consuming trial-and-error research, making it a time-saver for drug researchers. ... » read more

Memory Startups To Watch


The next-generation memories are finally ramping up after years’ of delays and promises. Intel, for one, is shipping 3D XPoint, a next-generation technology based on phase-change memory. In addition, the big foundries are readying embedded MRAM. And, of course, there are a number of other players in the next-generation memory arena. There are also a number of startups that are flying un... » read more

Power/Performance Bits: May 8


Cobalt-free cathodes Researchers at the University of California, Berkeley, built lithium-ion battery cathodes without cobalt that can store 50% more energy than traditional cobalt-containing cathodes. Currently, lithium-ion battery cathodes use layered structures, which cobalt is necessary to maintain. When lithium ions move from the cathode to anode during charging, a lot of space is left... » read more

← Older posts Newer posts →