Elimination Of Functional False Path During RDC Analysis


Reset domain crossing (RDC) issues can occur in sequential designs when the reset of a source register differs from the reset of a destination register, even if the data path is in the same clock domain. This can lead to asynchronous crossing paths and metastability at the destination register. RDC analysis on RTL designs is done to find such metastability issues in a design, which may occur du... » read more

A Unified Solution for End-to-End Low Power Verification


Low power designs are becoming increasingly prevalent in modern electronic systems, driven by the need for energy-efficient devices. Ensuring the correctness of these designs is paramount, as even minor errors can lead to catastrophic consequences. To achieve verification closure for low power designs, a combination of static verification, dynamic simulation-based verification, formal verificat... » read more

Better, Faster, And More Efficient Verification With The Power Of AI


Verification is often the most challenging part of the chip development process. Verification engineers have to balance quality of results (QOR) with time to results (TTR) and cost of results (COR). AI and ML technologies can play a significant part in increasing QOR, speeding up TTR, and reducing COR. This white paper outlines some of the major challenges for verification, describes how AI pro... » read more

Automated Conversion Of Xilinx Vivado Projects To ALINT-PRO


Aldec's ALINT-PRO design verification solution performs static RTL and design constraints code analysis to uncover critical design issues early in the design cycle. The product helps FPGA developers rise to the challenge of designing large FPGA designs and multiprocessor system on chip devices that include high-capacity and high-performance FPGA hardware. The solution supports running rule c... » read more

Early Detection Of Reset Domain Crossing Errors


Many aspects of system-on-chip (SoC) designs are growing, including the numbers of gates, memories, clock domains, reset domains, power domains, on-chip buses, and external interfaces. A recent blog post focused on reset domain crossings (RDCs) and the requirements for effective pre-silicon verification of these trouble-prone structures. If properly applied, a solution meeting these requirement... » read more

Requirements For Exhaustive SoC Reset Domain Crossing Checks


It is common to read that the numbers of clock domains and power domains in system-on-chip (SoC) designs are increasing, but for some reason there is less discussion about resets. There is no doubt that the number of reset domains is also rising; studies have shown that the single reset of twenty years ago has been replaced by a complex network of 40-50 domains in many chips and even 150 in som... » read more

Linting RISC-V Designs


As the open-source RISC-V instruction set architecture (ISA) continues to gain momentum, the growing number of RISC-V design solutions and their flexibility creates a problem when choosing the most reliable and robust solution from a number of contenders. Sure, a RISC-V IP design must be compliant to basic ISA standards and should contain a testing suite demonstrating that compliance. But sh... » read more

Shift Left Power-Aware Static Verification


Next-generation SoCs with advanced graphics, computing, machine learning (ML) and artificial intelligence (AI) capabilities are posing new unseen challenges in Low Power Verification. These techniques can introduce critical bugs into a design, especially when the power-management infrastructure interacts with signals that cross clock or reset domains. This can create additional clock-domain cro... » read more

Clock Domain Crossing Signoff Through Static-Formal-Simulation


By Sudeep Mondal and Sean O'Donohue Clocking issues are one of the most common reasons for costly design re-spins. This has been the driving factor in the ever-increasing demand for Clock Domain Crossing (CDC) analysis tools. Today, the majority of IP and SoC teams are focusing on “Structural CDC” analysis, which is important but not sufficient. Structural CDC analysis ensures that the d... » read more

Power-Aware Intent And Structural Verification Of Low-Power Designs


In Part 1 of this series on power aware (PA) verification, we examined the foundations and verification features of PA static checks. In Part 2, we will discuss the features of the static verification library and describe best static verification practices. Library for Static Verifications Cell-level and pin-level attributes from Liberty are mandatorily required for accurate PA-Static verif... » read more

← Older posts