Where FD-SOI Works Best (Part 2)


Semiconductor Engineering sat down to discuss changes in the FD-SOI world and what's behind them, with James Lamb, deputy CTO for advanced semiconductor manufacturing and corporate technical fellow at Brewer Science; Giorgio Cesana, director of technical marketing at STMicroelectronics; Olivier Vatel, senior vice president and CTO at Screen Semiconductor Solutions; and Carlos Mazure, CTO at Soi... » read more

Auto Chip Test Getting Harder


Chipmakers and test/validation companies are helping lead the effort to develop self-driving cars, but they are facing a wide range of technical and even cultural barriers. Advanced driver assist systems (ADAS) already are the most complex systems by far in modern cars, the best of which hover between Level 2 and Level 3 on the five-step autonomy ladder maintained by the Society of Automotiv... » read more

Week In Review: Manufacturing, Test


Trade wars After opposing $34 billion in U.S. trade tariffs on behalf of the U.S. semiconductor manufacturing industry, Jonathan Davis, global vice president of industry advocacy at SEMI, recently spoke out against an additional $16 billion in duties on Chinese goods. The tariffs do little to address U.S. concerns over IP loss, according to SEMI. Over the past month, SEMI has also submitte... » read more

Everything You Need to Know about FDSOI Technology


Over the past decades, transistor feature size has continuously decreased, leading to an increase in performance and a reduction in power consumption. Consumers have reaped the benefits, with superior electronic devices that have become increasingly useful, valuable, faster and more efficient. In recent years, as transistor feature size has shrunk below 10nm, it has become progressively more di... » read more

Benefits And New Applications For FD-SOI


Over the past decades, transistor feature size has continuously decreased, leading to an increase in performance and a reduction in power consumption. Consumers have reaped the benefits, with superior electronic devices that have become increasingly useful, valuable, faster and more efficient. In recent years, as transistor feature size has shrunk below 10nm, it has become progressively more di... » read more

FD-SOI Going Mainstream


Semiconductor Engineering sat down to discuss changes in the FD-SOI world and what's behind them, with James Lamb, deputy CTO for advanced semiconductor manufacturing and corporate technical fellow at Brewer Science; Giorgio Cesana, director of technical marketing at STMicroelectronics; Olivier Vatel, senior vice president and CTO at Screen Semiconductor Solutions; and Carlos Mazure, CTO at Soi... » read more

The Week in Review: IoT


Conferences Keynote highlights from the Internet of Things World 2018 conference: “Safety is the most important thing,” said Russ Benson, vice president of IT product systems at Boeing; “It’s all about data,” said Juan Perez, chief information officer and chief engineering officer of UPS; “Semiconductors accelerate IoT growth,” said Tony Keirouz, vice president of IoT strategy, e... » read more

RF SOI Wars Begin


Several foundries are expanding their fab capacities for RF SOI processes amid huge demand and shortages of this technology for smartphones. A number of foundries are increasing their 200mm RF SOI fab capacities to meet soaring demand. Then, GlobalFoundries, TowerJazz, TSMC and UMC are expanding or bringing up RF SOI processes in 300mm fabs in an apparent race to garner the first wave of RF ... » read more

Challenges At The Edge


By Kevin Fogarty and Ed Sperling Edge computing is inching toward the mainstream as the tech industry begins grappling with the fact that far too much data will be generated by sensors to send everything back to the cloud for processing. The initial idea behind the IoT/IIoT, as well as other connected devices, was that simple sensors would relay raw data to the cloud for processing throug... » read more

Non-Traditional Chips Gaining Steam


Flexible hybrid electronics are beginning to roll out in the form of medical devices, wearable electronics and even near-field communications tags in retail, setting the stage for a whole new wave of circuit design, manufacturing and packaging that reaches well beyond traditional chips. FHE devices begin with substrates made of ceramics, glass, plastic, polyimide, polymers, polysilicon, stai... » read more

← Older posts Newer posts →