System Bits: July 3


CMU prof gets a shot at new supercomputer The National Energy Research Scientific Computing Center will greet its Perlmutter supercomputing system in early 2020. The Cray-designed machine will be capable of 100 million billion floating operations per second. Zachary Ulissi of Carnegie Mellon University will be among the first researchers to use the supercomputer. "When this machine comes on... » read more

Power/Performance Bits: June 10


Quantum dots plus perovskites Researchers at the University of Toronto and KAUST created a hybrid material for solar cells that utilizes both perovskites and quantum dots. Both quantum dots and perovskites suffer from instability: perovskites degrade quickly and certain types become incapable of fully absorbing solar radiation at room temperature, while quantum dots must be covered with a p... » read more

System Bits: Jan. 22


Toward more trusted microelectronics David Crandall, an associate professor in Indiana University Bloomington’s School of Informatics, Computing and Engineering, is collaborating with other researchers through the Indiana Innovation Institute (IN3) to work on technology challenges for private industry and the U.S. Department of Defense. Crandall is currently tackling trusted microelectron... » read more

System Bits: April 24


Some superconductors carry spin currents A few years ago, researchers from the University of Cambridge showed that it was possible to create electron pairs in which the spins are aligned: up-up or down-down. The spin current can be carried by up-up and down-down pairs moving in opposite directions with a net charge current of zero, and the ability to create such a pure spin super-current is an... » read more

Manufacturing Bits: Feb. 20


Hedgehog spin-vortex crystals The U.S. Department of Energy’s Ames Laboratory has discovered a missing piece to enable novel superconductor devices--the hedgehog spin-vortex crystal phase. Superconductors are devices that have zero electrical resistance, making them attractive for a range of applications. But superconductors must be cooled down to temperatures at or near absolute zero on ... » read more

Power/Performance Bits: June 27


Superconducting nanowire memory cell Researchers at the University of Illinois at Urbana-Champaign and the State University of New York at Stony Brook developed a new nanoscale memory cell that provides stable memory at a smaller size than other proposed memory devices, and holds promise for successful integration with superconducting processors. The device comprises two superconducting nan... » read more

System Bits: May 9


Graphene adopts exotic electronic states In a platform that may be used to explore avenues for quantum computing, MIT researchers have found that a flake of graphene, when brought in close proximity with two superconducting materials, can inherit some of those materials’ superconducting qualities. They reminded that in normal conductive materials such as silver and copper, electric curren... » read more

Power/Performance Bits: April 18


Cooling hotspots Engineers at Duke University and Intel developed a technology to cool hotspots in high-performance electronics. The new technology relies on a vapor chamber made of a super-hydrophobic floor with a sponge-like ceiling. When placed beneath operating electronics, moisture trapped in the ceiling vaporizes beneath emerging hotspots. The vapor escapes toward the floor, taking hea... » read more

Manufacturing Bits: April 19


Hot videos The University of Minnesota has recorded videos that show how heat travels through materials, a move that could give researchers insight into the behavior of atoms and other structures. It could also pave the way towards the development of more efficient materials for use in electronics and other applications. In the lab, researchers used FEI’s transmission electron microsc... » read more

Power/Performance Bits: March 22


Superconducting memory A group of scientists from the Moscow Institute of Physics and Technology and the Moscow State University developed a fundamentally new type of memory cell based on superconductors, which they believe will be able to work hundreds of times faster than memory devices commonly used today. The basic memory cells are based on quantum effects in "sandwiches" of supercond... » read more

← Older posts