The Wiretap Channel for Capacitive PUF-Based Security Enclosures


Abstract: "In order to protect devices from physical manipulations, protective security enclosures were developed. However, these battery-backed solutions come with a reduced lifetime, and have to be actively and continuously monitored. In order to overcome these drawbacks, batteryless capacitive enclosures based on Physical Unclonable Functions (PUFs) have been developed that generate a key-e... » read more

Power/Performance Bits: Dec. 14


Improved digital sensing Researchers from Imperial College London and Technical University of Munich propose a technique to improve the capability of many different types of sensors. The method addresses voltage limits in analog-to-digital converters and the saturation that results in poor quality when an incoming signal exceeds those limits. “Our new technique lets us capture a fuller ra... » read more

Power/Performance Bits: Oct. 19


Post-quantum crypto chip Researchers at the Technical University of Munich (TUM) designed and had fabricated an ASIC to run new encryption algorithms that can stand up to quantum computing. “Ours is the first chip for post-quantum cryptography to be based entirely on a hardware/software co-design approach,” said Georg Sigl, Professor of Security in Information Technology at TUM. “As a... » read more

Power/Performance Bits: May 4


Speculative execution vulnerable again Computer scientists from the University of Virginia and University of California San Diego warn of a processor architecture vulnerability that gets around the techniques used to secure processors in the wake of Spectre. In 2018, Spectre and the similar Meltdown vulnerability were announced. These types of attacks could allow malicious agents to exploit... » read more

Power/Performance Bits: Nov. 17


NVMe controller for research Researchers at the Korea Advanced Institute of Science and Technology (KAIST) developed a non-volatile memory express (NVMe) controller for storage devices and made it freely available to universities and research institutions in a bid to reduce research costs. Poor accessibility of NVMe controller IP is hampering academic and industrial research, the team argue... » read more

System Bits: May 21


Washable, wearable energy devices for clothing Researchers at the University of Cambridge collaborated with colleagues at China’s Jiangnan University to develop wearable electronic components that could be woven into fabrics for clothing, suitable for energy conversion, flexible circuits, health-care monitoring, and other applications. Graphene and other materials can be directly incorpor... » read more

Manufacturing Bits: March 11


Measuring molecules The Technical University of Munich (TUM) has developed a new metrology technique that determines the properties of individual molecules. The technique, called single-molecule excitation–emission spectroscopy, improves upon the traditional methods to explore molecules. The traditional method, dubbed single-molecule spectroscopy (SMS), is not new and is used to analyze f... » read more

System Bits: Feb. 19


Eco-friendly material for wireless IoT sensors Researchers at Canada’s Simon Fraser University and in Switzerland collaborated on developing a wood-derived cellulose material that could be used in a 3D printer, instead of the customary plastic and polymeric materials for electronics. With 3D printing, the material can offer flexibility to add or embed functions onto 3D shapes or fabrics, the... » read more

Manufacturing Bits: Oct. 9


Super atoms The Technical University of Munich (TUM) has devised what it calls a super atom, a technology that could one day enable a new class of catalysts. TUM developed a cluster made up of 55 copper and aluminum atoms. The cluster looks like a crystal, but it actually has the properties of an atom or a heterometallic super atom. The super atom could one day be used to develop more cost-... » read more

Manufacturing Bits: June 26


Gummy bear chips The Technical University of Munich (TUM) and Forschungszentrum Jülich have developed a 3D inkjet printing technique to print electrodes on several soft substrates, including gummy bears. The main application is to develop a new class of sensor-based implants for life sciences. For this application, electrodes or microelectrode arrays (MEAs) are developed and printed on sof... » read more

← Older posts Newer posts →