It’s All About Staying Ahead Of The Test Challenges Curve


Since the early days when semiconductor devices contained a mere handful of gates, the manufacturing test world has been focused on how to detect the greatest number of potential defects in the shortest amount of time. This fundamental goal has not changed over the years and continues at 5nm and beyond. What has dramatically changed over the years, however, is the variety of techniques used ... » read more

The Quest For Perfection


Demands by automakers for zero defects over 15 years are absurd, particularly when it comes to 10/7nm AI systems that will be the brains of autonomous and assisted driving or any mobile electronic device. There are several reasons for this. To begin with, no one has ever used a 10/7nm device under extreme conditions for any length of time. Chips developed at these nodes are just starting to ... » read more

5G Lessons Learned From Automotive Radar Test


Situated between microwave and infrared waves, the millimeter-wave spectrum is the band of spectrum between 30 gigahertz (GHz) and 300GHz. It is used for high-speed wireless communications and is widely considered as the means to bring 5G into the future by allocating more bandwidth to deliver faster, higher-quality video, and multimedia content and services. Automotive radar is the entry point... » read more

Tessent Cell-Aware Test


Tessent Cell-Aware ATPG is a transistor-level ATPG-based test methodology that achieves significant quality and efficiency improvements by directly targeting specific shorts; opens and transistor defects internal to each standard cell; resulting in significant reductions in defect (DPM) levels. Traditional scan patterns are created using fault models that are based on the logical operation of t... » read more

Digital IC Bring-Up With A Bench-Top Environment


One of the hottest markets for IC today is artificial intelligence (AI). The designs for AI chips are also among the largest and most complex, with billions of transistors, thousands of memory instances, and complex design-for-test (DFT) implementations with unique bring up and debug requirements. At this point, the volume of new AI chips is relatively low, but time-to-market is of paramount im... » read more

Accelerating Test Pattern Bring-Up For Rapid First Silicon Debug


Reducing the time spent on silicon bring-up is critical in getting ICs into the hands of customers and staying competitive. Typically, the silicon bring-up process involves converting the test patterns to a tester-specific format and generating a test program that is executed by Automatic Test Equipment (ATE). This standard silicon bring-up flow is becoming too slow and expensive, especially fo... » read more

Changing The Design Flow


Synopsys’ Michael Jackson talks with Semiconductor Engineering about why it’s becoming necessary to fuse together various pieces of digital design. https://youtu.be/AOWh4wjw-ps » read more

Who’s Paying For Auto Chip Test?


Testing of automotive chips is becoming more difficult and time-consuming, and the problem is only going to get worse. There is more to this than simply developing new test equipment or devising a better design for test flow. There are multiple issues at play here, and some of them are at odds with the others. First, no one has experience using advanced-node chips in extreme environments.... » read more

The Chiplet Race Begins


Momentum is building for the development of advanced packages and systems using so-called chiplets, but the technology faces some challenges in the market. A group led by DARPA, as well as Marvell, zGlue and others are pursuing chiplet technology, which is a different way of integrating multiple dies in a package or system. In fact, the Defense Advanced Research Projects Agency (DARPA), part... » read more

Debug Issues Grow At New Nodes


Debugging and testing chips is becoming more time-consuming, more complicated, and significantly more difficult at advanced nodes as well as in advanced packages. The main problem is that there are so many puzzle pieces, and so many different use cases and demands on those pieces, that it's difficult to keep track of all the changes and potential interactions. Some blocks are "on" sometimes,... » read more

← Older posts Newer posts →