Using Reservoir Offset Voltage Of a Quantum Dot as Gate Electrode


Technical paper titled "The functions of a reservoir offset voltage applied to physically defined p-channel Si quantum dots" from researchers at Tokyo Institute of Technology and Device Technology Research Institute (D-Tech), National Institute of Advanced Industrial Science and Technology (AIST). Abstract "We propose and define a reservoir offset voltage as a voltage commonly applied to b... » read more

Technical Paper Round-Up: June 21


New technical papers added to Semiconductor Engineering’s library this week. [table id=34 /] Semiconductor Engineering is in the process of building this library of research papers. Please send suggestions (via comments section below) for what else you’d like us to incorporate. If you have research papers you are trying to promote, we will review them to see if they are a good fit f... » read more

Review of Bumpless Build Cube Using Wafer-on-Wafer & Chip-on-Wafer for Tera-Scale 3D Integration


New research paper titled "Review of Bumpless Build Cube (BBCube) Using Wafer-on-Wafer (WOW) and Chip-on-Wafer (COW) for Tera-Scale Three-Dimensional Integration (3DI)" from researchers at Tokyo Institute of Technology and others. Abstract "Bumpless Build Cube (BBCube) using Wafer-on-Wafer (WOW) and Chip-on-Wafer (COW) for Tera-Scale Three-Dimensional Integration (3DI) is discussed. Bum... » read more

Usability of Authenticity Checks for Hardware Security Tokens


Abstract:  "The final responsibility to verify whether a newly purchased hardware security token (HST) is authentic and unmodified lies with the end user. However, recently reported attacks on such tokens suggest that users cannot take the security guarantees of their HSTs for granted, even despite widely deployed authenticity checks. We present the first comprehensive market review eva... » read more

Power/Performance Bits: Aug. 9


Capacitors in interposers Scientists at Tokyo Institute of Technology developed a 3D functional interposer containing an embedded capacitor. They tout the design as saving package area and reducing wiring length, resulting in less noise and power consumption. The capacitive elements are embedded inside a 300mm silicon piece using permanent adhesive and mold resin. The interconnects between ... » read more

Power/Performance Bits: Aug. 3


Efficient ADC Researchers at Brigham Young University, National Yang Ming Chiao Tung University, Texas Instruments, and University of California Los Angeles designed a new power-efficient high-speed analog-to-digital converter. The ADC consumes only 21 milli-Watts of power at 10GHz for ultra-wideband wireless communications, much lower than other ADCs that consume hundreds of milli-Watts to... » read more

Power/Performance Bits: March 23


Metasurface for optical media Researchers at Purdue University proposed a new way to store information in optical media, such as CDs and DVDs, that could improve both storage capacity and read times. The development focuses on encoding information in the angular position of tiny antennas, allowing them to store more data per unit area. "The storage capacity greatly increases because it is o... » read more

Manufacturing Bits: Jan. 5


Gallium oxide chips The National Renewable Energy Laboratory (NREL), the Colorado School of Mines, and Saint-Gobain Crystals have teamed up to develop manufacturing technologies and devices based on an emerging material called gallium oxide. This work is part of a three-year program, dubbed the Oxide Electronic Devices for Extreme Operating Environments project, which is funded by the U.S. ... » read more

Manufacturing Bits: Dec. 1


New phase-change materials The National Institute of Standards and Technology (NIST) has developed an open source machine learning algorithm for use in discovering and developing new materials. NIST’s technology, called CAMEO, has already been used by researchers to discover a new phase-change memory material. CAMEO, which stands for Closed-Loop Autonomous System for Materials Exploration... » read more

Power/Performance Bits: Aug. 18


Flexible, hole-filled films Researchers from Daegu Gyeongbuk Institute of Science and Technology (DGIST) and Hongik University propose a simple way to make flexible electrodes and thin film transistors last longer: adding lots of tiny holes. A major problem with flexible electronics is the formation of microscopic cracks after repeated bending which can cause the device to lose its conducti... » read more

← Older posts Newer posts →