Navigating Increased Complexity In Advanced Packaging


As chips evolve toward stacked, heterogeneous assemblies and adopt more complex materials, engineers are grappling with new and often less predictable sources of variation. This is redefining what it means to achieve precision, forcing companies to rethink everything from process control and in-line metrology to materials selection and multi-level testing. These assemblies are the result of ... » read more

New Approaches To Power Decoupling


Decoupling capacitors have long been an important aspect of maintaining a clean power source for integrated circuits, but with noise caused by rising clock frequencies, multiple power domains, and various types of advanced packaging, new approaches are needed. Power is a much more important factor than it used to be, especially in the era of AI. “Doing an AI search consumes 10X the power t... » read more

Managing EMI in High-Density Integration


The relentless drive for higher performance and increased functional integration has ushered in new challenges for managing electromagnetic interference (EMI) in densely packed mixed-signal environments. Integrating analog, RF, and digital circuits into a single system-on-chip (SoC) or advanced package requires solutions that reduce system size and improve performance. However, this tight in... » read more

Metrology And Inspection For The Chiplet Era


New developments and innovations in metrology and inspection will enable chipmakers to identify and address defects faster and with greater accuracy than ever before, all of which will be required at future process nodes and in densely packed assemblies of chiplets. These advances will affect both front-end and back-end processes, providing increased precision and efficiency, combined with a... » read more

Where Power Savings Really Count


Experts at the Table: Semiconductor Engineering sat down to discuss why and where improvements in architectures and data movement will have the biggest impact, with Hans Yeager, senior principal engineer, architecture, at Tenstorrent; Joe Davis, senior director for Calibre interfaces and EM/IR product management at Siemens EDA; Mo Faisal, CEO of Movellus; Trey Roessig, CTO and senior vice presi... » read more

Precision Patterning Options Emerge For Advanced Packaging


The chip industry is ratcheting up investments in advanced packaging as it strives to keep pace with demands for increased functionality and higher performance, including novel patterning technologies that can reduce costs and speed time to market. Success in advanced packages is partly dependent on effectively managing the interconnectivity between the chips, which requires increasingly pre... » read more

Integration Hurdles For Analog And RF In Next-Gen Packages


A rapid increase in wireless connectivity and more sensors, coupled with a shift away from monolithic SoCs toward heterogeneous integration, is driving up the amount of analog/RF content in systems and changing the dynamics within a package. Since the early 2000s, the majority of chips used at the most advanced nodes were systems-on-chip (SoCs). All features had to fit into a single planar S... » read more

Self-Heating Issues Spread


With every new node there are additional physical effects that must be considered, but not all of them are of the same level of criticality. One that is being mentioned more frequently is self-heating. All devices consume power and when they do that, it becomes heat. "In essence, all active devices generate heat as carriers move, creating channels for current to pass through the gates," says... » read more

The Path To Known Good Interconnects


Chiplets and heterogenous integration (HI) provide a compelling way to continue delivering improvements in performance, power, area, and cost (PPAC) as Moore’s Law slows, but choosing the best way to connect these devices so they behave in consistent and predictable ways is becoming a challenge as the number of options continues to grow. More possibilities also bring more potential interac... » read more

3D-IC Reliability Degrades With Increasing Temperature


The reliability of 3D-IC designs is dependent upon the ability of engineering teams to control heat, which can significantly degrade performance and accelerate circuit aging. While heat has been problematic in semiconductor design since at least 28nm, it is much more challenging to deal with inside a 3D package, where electromigration can spread to multiple chips on multiple levels. “Be... » read more

← Older posts