Self-Heating Issues Spread


With every new node there are additional physical effects that must be considered, but not all of them are of the same level of criticality. One that is being mentioned more frequently is self-heating. All devices consume power and when they do that, it becomes heat. "In essence, all active devices generate heat as carriers move, creating channels for current to pass through the gates," says... » read more

The Path To Known Good Interconnects


Chiplets and heterogenous integration (HI) provide a compelling way to continue delivering improvements in performance, power, area, and cost (PPAC) as Moore’s Law slows, but choosing the best way to connect these devices so they behave in consistent and predictable ways is becoming a challenge as the number of options continues to grow. More possibilities also bring more potential interac... » read more

3D-IC Reliability Degrades With Increasing Temperature


The reliability of 3D-IC designs is dependent upon the ability of engineering teams to control heat, which can significantly degrade performance and accelerate circuit aging. While heat has been problematic in semiconductor design since at least 28nm, it is much more challenging to deal with inside a 3D package, where electromigration can spread to multiple chips on multiple levels. “Be... » read more

Chiplets Enter The Supercomputer Race


Several entities from various nations are racing each other to deliver and deploy chiplet-based exascale supercomputers, a new class of systems that are 1,000x faster than today’s supercomputers. The latest exascale supercomputer CPU and GPU designs mix and match complex dies in advanced packages, adding a new level of flexibility and customization for supercomputers. For years, various na... » read more

Preparing For 3D-ICs


Experts at the Table: Semiconductor Engineering sat down to discuss the changes in design tools and methodologies needed for 3D-ICs, with Sooyong Kim, director and product specialist for 3D-IC at Ansys; Kenneth Larsen, product marketing director at Synopsys; Tony Mastroianni, advanced packaging solutions director at Siemens EDA; and Vinay Patwardhan, product management group director at Cadence... » read more

Next-Gen 3D Chip/Packaging Race Begins


The first wave of chips is hitting the market using a technology called hybrid bonding, setting the stage for a new and competitive era of 3D-based chip products and advanced packages. AMD is the first vendor to unveil chips using copper hybrid bonding, an advanced die-stacking technology that enables next-generation 3D-like devices and packages. Hybrid bonding stacks and connects chips usin... » read more

Expanding Advanced Packaging Production In The U.S.


The United States is taking the first steps toward bringing larger-scale IC packaging production capabilities back to the U.S. as supply chain concerns and trade tensions grow. The U.S. is among the leaders in developing packages, especially new and advanced forms of the technology that promise to shake up the semiconductor landscape. And while the U.S. has several packaging vendors, North A... » read more

Challenges With Stacking Memory On Logic


Experts at the Table: Semiconductor Engineering sat down to discuss the changes in design tools and methodologies needed for 3D-ICs, with Sooyong Kim, director and product specialist for 3D-IC at Ansys; Kenneth Larsen, product marketing director at Synopsys; Tony Mastroianni, advanced packaging solutions director at Siemens EDA; and Vinay Patwardhan, product management group director at Cadence... » read more

Scaling Bump Pitches In Advanced Packaging


Interconnects for advanced packaging are at a crossroads as an assortment of new package types are pushing further into the mainstream, with some vendors opting to extend the traditional bump approaches while others roll out new ones to replace them. The goal in all cases is to ensure signal integrity between components in IC packages as the volume of data being processed increases. But as d... » read more

Architecting Interposers


An interposer performs a similar function as a printed circuit board (PCB), but when the interposer is moved inside a package the impact is significant. Neither legacy PCB nor IC design tools can fully perform the necessary design and analysis tasks. But perhaps even more important, adding an interposer to a design may require organizational changes. Today, leading-edge companies have shown ... » read more

← Older posts