Research Bits: May 16


Germanium-tin transistor Scientists at Forschungszentrum Jülich, CEA-Leti, University of Leeds, Leibniz Institute for High Performance Microelectronics, and RWTH Aachen University fabricated a new type of transistor from a germanium-tin alloy. Charge carriers can move faster in the material than in silicon or germanium, which enables lower voltages in operation. “The germanium–tin syst... » read more

Chip Industry’s Technical Paper Roundup: Apr. 18


New technical papers recently added to Semiconductor Engineering’s library: [table id=93 /]   If you have research papers you are trying to promote, we will review them to see if they are a good fit for our global audience. At a minimum, papers need to be well researched and documented, relevant to the semiconductor ecosystem, and free of marketing bias. There is no cost involv... » read more

Vertical Nanowire Gate-All-Around FETs based on the GeSn-Material System Grown on Si


A new technical paper titled "Vertical GeSn nanowire MOSFETs for CMOS beyond silicon" was published by researchers at Peter Grünberg Institute 9, JARA, RWTH Aachen University, CEA, LETI, University of Grenoble Alpes, University of Leeds, and IHP. "Here, we present high performance, vertical nanowire gate-all-around FETs based on the GeSn-material system grown on Si. While the p-FET transcon... » read more

Manufacturing Bits: Aug. 13


Exascale supercomputers The Department of Energy’s National Nuclear Security Administration (DOE/NNSA) has signed a contract valued at $600 million with Cray to build NNSA’s first exascale supercomputer. The system, called El Capitan, is expected to be shipped in late 2022. El Capitan will be housed at Lawrence Livermore National Laboratory (LLNL), and will perform research to maintain ... » read more

Power/Performance Bits: Nov. 10


Singing to your storage Existing research on 'racetrack memory', which uses tiny magnetic wires, each one hundreds of times thinner than a human hair, down which magnetic bits of data run like racing cars around a track, has focused on using either magnetic fields or electric currents to move the data bits down the wires. However, both these options create heat and reduce power efficiency. ... » read more

System Bits: Aug. 11


Fundamental physics discovery The study of correlated electrons — a branch of fundamental physics research — focuses on interactions between the electrons in metals, which now are understood a bit better, according to Caltech researchers. Understanding these interactions and the unique properties they produce could lead to the development of novel materials and technologies, but they mu... » read more