System Bits: June 18


Another win for aUToronto Photo credit: University of Toronto The University of Toronto’s student-led self-driving car team racked up its second consecutive victory last month at the annual AutoDrive Challenge in Ann Arbor, Mich. The three-year challenge goes out to North American universities, offering a Chevrolet Bolt electric vehicle to outfit with autonomous driving technology.... » read more

System Bits: May 28


Home robotics get cozier Cornell University’s Guy Hoffman was perplexed when he first saw social robots in stores. “I noticed a lot of them had a very similar kind of feature – white and plasticky, designed like consumer electronic devices,” said Hoffman, assistant professor and the Mills Family Faculty Fellow in the Sibley School of Mechanical and Aerospace Engineering. “Especial... » read more

System Bits: May 6


Transmitting data with a semiconductor laser Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences demonstrated a laser that can emit microwaves wirelessly, modulate them, and receive external radio frequency signals. “The research opens the door to new types of hybrid electronic-photonic devices and is the first step toward ultra-high-speed Wi-Fi,” said ... » read more

System Bits: April 23


AI tool can clean up dirty data Researchers at the University of Waterloo, collaborating with colleagues at the University of Wisconsin and Stanford University, came up with HoloClean, an artificial intelligence tool to comb through dirty data and to detect information errors. “More and more machines are making decisions for us, so all our lives are touched by dirty data daily,” said Ih... » read more

System Bits: March 5


The new electronics field of magnonics Transistors keep shrinking to dimensions that are difficult to fabricate. There is doubt in the semiconductor industry about the possibility of producing 1-nanometer features with existing process technology. The answer may lie in magnonic currents: quasi-particles associated with waves of magnetization, or spin waves, in magnetic materials. Researcher... » read more

System Bits: Oct. 25


Scalable quantum computers In what they say is a significant step towards to the realization of a scalable quantum computer, researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits. The quantum socket is a wiring method that uses 3D based on spring-lo... » read more

System Bits: Jan. 26


Precisely controlling graphene molecules Researchers at UCLA’s California NanoSystems Institute have found that in the same way gardeners may use sheets of plastic with strategically placed holes to allow plants to grow but keep weeds from taking root, the same basic approach can be applied in terms of placing molecules in the specific patterns they need within tiny nanoelectronic devices, w... » read more

Power/Performance Bits: April 21


Harvesting more electromagnetic energy Researchers from the University of Waterloo in Canada showed for the first time that it's possible to collect essentially all of the electromagnetic energy that falls onto a surface. Their approach involves the use of metamaterials that can be tailored to produce media that neither reflects nor transmits any power, enabling full absorption of incident w... » read more