Research Bits: September 26


2D waveguides Researchers from the University of Chicago found that a sheet of glass crystal just a few atoms thick could trap and carry light efficiently up to a centimeter. In tests, the researchers found they could use extremely tiny prisms, lenses, and switches to guide the path of the light along a chip. “We were utterly surprised by how powerful this super-thin crystal is; not on... » read more

Power/Performance Bits: Aug. 18


Flexible, hole-filled films Researchers from Daegu Gyeongbuk Institute of Science and Technology (DGIST) and Hongik University propose a simple way to make flexible electrodes and thin film transistors last longer: adding lots of tiny holes. A major problem with flexible electronics is the formation of microscopic cracks after repeated bending which can cause the device to lose its conducti... » read more

Power/Performance Bits: Aug. 20


Six-angstrom waveguide Engineers at the University of California San Diego, City University of New York, and Johns Hopkins University created the thinnest optical waveguide yet. At only three atoms thick, the team says the waveguide serves as a proof of concept for scaling down optical devices. The waveguide consists of a tungsten disulfide monolayer (made up of one layer of tungsten atoms ... » read more

Silicon Photonics: Solving Process Variation And Manufacturing Challenges


As silicon photonics manufacturing gains momentum with additional foundry and 300mm offerings, process variation issues are coming to light. Variability in silicon processing affects the waveguide shape and can result in deviation in effective indices, propagation loss, and coupling efficiency from the intended design. In this article, we will highlight process variation issues that can occur i... » read more