Author's Latest Posts


Deeper Inside Intel


Mark Bohr, senior fellow and director of process architecture and integration at Intel, and Zane Ball, vice president in the Technology and Manufacturing Group at Intel and co-general manager of Intel Custom Foundry, sat down with Semiconductor Engineering to discuss the future directions of transistors, process technology, the foundry business and packaging. What follows are excerpts of those ... » read more

The Week In Review: Manufacturing


Fab tool and material vendors Applied Materials reported its results for the third quarter ended July 31. Net sales of $2.82 billion were up 15% sequentially and up 13% year over year. "AMAT reported impressive upside in July quarter and guided October quarter well ahead of expectations as the company is seeing sizable tailwinds across: 1) WFE uptick driven by foundry and NAND orders; 2) stron... » read more

Trade War Looms Over Materials


It’s time to pay close attention to rare earths and raw materials--again. In fact, the supply chain teams and commodity buyers at aerospace, automotive and electronics companies may have some new and potentially big problems on their hands. For some time, the European Union (EU), the United States and other nations have been at odds with China over rare earths. China, which accounts for... » read more

How Small Will Transistors Go?


By Mark LaPedus & Ed Sperling There is nearly universal agreement that Moore’s Law is slowing down. But whether it will truly end, or just become too expensive and less relevant—and what will supplant device scaling—are the subject of some far-reaching research and much discussion. Semiconductor Engineering sat down with each of the leaders of three top research houses—[getent... » read more

Mask Maker Worries Grow


Leading-edge photomask makers face a multitude of challenges as they migrate from the 14nm node and beyond. Mask making is becoming more challenging and expensive at each node on at least two fronts. On one front, mask makers must continue to invest in the development of traditional optical masks at advanced nodes. On another front, several photomask vendors are preparing for the possible ra... » read more

What Transistors Will Look Like At 5nm


Chipmakers are currently ramping up 16nm/14nm finFET processes, with 10nm and 7nm just around the corner. The industry also is working on 5nm. TSMC hopes to deliver a 5nm process by 2020. GlobalFoundries, Intel and Samsung are doing R&D for that node. But 5nm technology presents a multitude of unknowns and challenges. For one thing, the exact timing and specs of 5nm remain cloudy. The... » read more

10nm Race Heats Up


The 10nm process and foundry race is heating up, as Intel announced its 10nm technology at its annual conference. As part of the multi-pronged announcement, Intel’s foundry unit forged a major partnership with ARM. Specifically, ARM will make its physical intellectual-property (IP) available on Intel’s 10nm process. Intel, in turn, will offer the IP for foundry customers. And on to... » read more

Manufacturing Bits: Aug. 16


Safer drinking water Two-dimensional materials are gaining steam in the R&D labs. 2D materials include graphene, boron nitride (BN) and the transition-metal dichalcogenides (TMDs). These materials could one day enable future field-effect transistors (FETs). One TMD, molybdenum disulfide (MoS2), is also generating interest in other fields. Molybdenum disulfide consists of two elements--moly... » read more

The Week In Review: Manufacturing


Chipmakers At this week’s Flash Memory Summit, Samsung rolled out several new products, including its next-generation 3D NAND device and a solid-state drive (SSD) with capacities up to 32 terabytes. At the same time, Samsung introduced a new and high-performance SSD solution, dubbed the Z-SSD. Samsung’s Z-SSD shares the fundamental structure of V-NAND and has a unique circuit design and... » read more

Manufacturing Bits: Aug. 9


Faster FEBIDs Focused electron beam induced deposition (FEBID) is generating steam in the industry. Still in the R&D stage, FEBID makes use of an electron beam from a scanning electron microscope. Basically, it decomposes gaseous molecules, which, in turn, deposit materials and structures on a surface at the nanoscale. One of the big applications is a futuristic manufacturing technology... » read more

← Older posts