Research Bits: March 29


Brain-like AI chip Researchers from Purdue University, Santa Clara University, Portland State University, Pennsylvania State University, Argonne National Laboratory, University of Illinois Chicago, Brookhaven National Laboratory, and University of Georgia built a reprogrammable chip that could be used as the basis for brain-like AI hardware. “The brains of living beings can continuously l... » read more

Technical Paper Round-Up: March 29


Improving batteries, ultra low-power photonic edge computing, SLAM, Tellurium for 2D semiconductors, and reservoir computing top the past week's technical papers. The focus on energy is critical as the edge buildout continues and more devices are connected to a battery, while research into new architectures and materials that will continue scaling and improve performance per watt continue at th... » read more

Research Bits: March 22


Securing wireless communications without encryption Researchers from Princeton University, University of Michigan–Shanghai Jiao Tong University Joint Institute, and Xi’an Jiaotong University developed a millimeter-wave wireless chip that allows secure wireless transmissions and makes it challenging to eavesdrop on high-frequency wireless transmissions, even with multiple colluding bad acto... » read more

Technical Paper Round-Up: March 22


New memories, materials, and transistor types, and processes for making those devices, highlighted the past week's technical papers. That includes everything from vertical MoS2 to programmable black phosphorus image sensors and photonic lift-off processes for flexible thin-film materials. Papers continue to flow from all parts of the supply chain, with some new studies out of Pakistan, Seoul... » read more

Research Bits: March 15


Interferometer on chip Researchers at the University of Rochester developed an optical interferometer on a 2mm by 2mm integrated photonic chip that is capable of amplifying interferometric signals without a corresponding increase in extraneous noise. Interferometers merge two or more sources of light to create interference patterns that provide information able what they illuminate. “If y... » read more

Technical Paper Round-Up: March 15


Research is expanding across a variety of semiconductor-related topics, from security to flexible substrates and chiplets. Unlike in the past, when work was confined to some of the largest universities, that research work is now being spread across a much broader spectrum of schools on a global basic, including joint research involving schools whose names rarely appeared together. Among the ... » read more

Research Bits: March 7


Optical signal processing with acoustic waves Researchers from Pohang University of Science & Technology (POSTECH) demonstrated an optical-wave signal that can be amplified or canceled using optically driven acoustic waves on a silicon chip. Optical signal processing using Brillouin scattering, in which acoustic waves scatter light, has been demonstrated in nanophotonic structures. But ... » read more

Research Bits: March 1


Large-scale phased array Researchers at Princeton University developed a large-scale high-frequency antenna array using thin-film materials. “To achieve these large dimensions, people have tried discrete integration of hundreds of little microchips. But that’s not practical — it’s not low-cost, it’s not reliable, it’s not scalable on a wireless systems level,” said senior stud... » read more

Research Bits: Feb. 22


Dense optical data storage Researchers from the University of Southampton developed a laser writing method for producing high-density nanostructures in silica glass, which could be used for long-term, dense data storage. “Individuals and organizations are generating ever-larger datasets, creating the desperate need for more efficient forms of data storage with a high capacity, low energy ... » read more

Manufacturing Bits: Feb. 15


Strong plastics The Massachusetts Institute of Technology has developed a new material that is stronger than steel but is light as plastic. The new material, which can be made in large quantities, involves a two-dimensional polymer that self-assembles into sheets. The material’s Young modulus—or a measure of how much force it takes to deform a material—is between four and six times gr... » read more

← Older posts Newer posts →