A quantitative model for the bipolar amplification effect: A new method to determine semiconductor/oxide interface state densities


Abstract "We report on a model for the bipolar amplification effect (BAE), which enables defect density measurements utilizing BAE in metal–oxide–semiconductor field-effect transistors. BAE is an electrically detected magnetic resonance (EDMR) technique, which has recently been utilized for defect identification because of the improved EDMR sensitivity and selectivity to interface defects.... » read more

Dual Surface Architectonics for Directed Self‐Assembly of Ultrahigh‐Resolution Electronics


Abstract: "The directed self‐assembly of electronic circuits using functional metallic inks has attracted intensive attention because of its high compatibility with extensive applications ranging from soft printed circuits to wearable devices. However, the typical resolution of conventional self‐assembly technologies is not sufficient for practical applications in the rapidly evolving addi... » read more

Multicolored Nanocolloidal Hydrogel Inks For Anti-Counterfeiting


Abstract "Nanocolloidal gels are emerging as a promising class of materials with applications as inks in 2D and 3D printing. Polymer nanoparticles (NPs) offer many advantages as potential building blocks of nanocolloidal gels, due to the ability to control NP dimensions, charge, surface chemistry, and functionality; however, their applications as inks in printing are yet to be explored. Here, ... » read more

Probe assisted localized doping of aluminum into silicon substrates


Abstract "This paper discusses the development of a rapid, large-scale integration of deterministic dopant placement technique for encoding information in physical structures at the nanoscale. The doped structures inherit identical and customizable radiofrequency (RF) electronic signature, which could be leveraged into an identification feature unique to the tag item. This will allow any manuf... » read more

Nanoporous Dielectric Resistive Memories Using Sequential Infiltration Synthesis


Abstract "Resistance switching in metal–insulator–metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low operating voltages, high on/off ratios, and low leakage have limited their utility... » read more

Improved Performance of GaN-Based Ultraviolet LEDs with the Stair-like Si-Doping n-GaN Structure


Abstract "A method to improve the performance of ultraviolet light-emitting diodes (UV-LEDs) with stair-like Si-doping GaN layer is investigated. The high-resolution X-ray diffraction shows that the UV-LED with stair-like Si-doping GaN layer possesses better quality and a lower dislocation density. In addition, the experimental results demonstrate that light output power and wall plug effici... » read more

High-NA EUVL: the next major step in lithography


"In the course of 2025, we expect to see the introduction of the first high-NA extreme ultraviolet (EUV) lithography equipment in high-volume manufacturing environments. These next-generation lithography systems will be key to advance Moore’s Law towards the logic 2nm technology generation and beyond. In this article, imec scientists and engineers involved in preparing this major engine... » read more

Inverse lithography technology: 30 years from concept to practical, full-chip reality


Published in the Journal of Micro/Nanopatterning, Materials, and Metrology, Aug. 31, 2021. Read the full technical paper here (open access). Abstract In lithography, optical proximity and process bias/effects need to be corrected to achieve the best wafer print. Efforts to correct for these effects started with a simple bias, adding a hammer head in line-ends to prevent line-end shortening. T... » read more

Memory Technology: Innovations needed for continued technology scaling and enabling advanced computing systems


Abstract: "An increasing demand for data generation, storage, and intelligence generation from data is driving advances in memory technology and advanced computing applications. Memory performance is starting to define modern day computing in both mobile and server environments. There is an absolute need to continue the tremendous pace of memory technology improvements to deliver performanc... » read more

Convolutional Compaction-Based MRAM Fault Diagnosis


Abstract: "Spin-transfer torque magnetoresistive random-access memories (STT-MRAMs) are gradually superseding conventional SRAMs as last-level cache in System-on-Chip designs. Their manufacturing process includes trimming a reference resistance in STT-MRAM modules to reliably determine the logic values of 0 and 1 during read operations. Typically, an on-chip trimming routine consists of mult... » read more

← Older posts Newer posts →