Argonne & Univ. of Chicago: Using Quantum Computers to Simulate Quantum Materials


Research study titled "Simulating the electronic structure of spin defects on quantum computers," by Argonne National Laboratory and the University of Chicago. Abstract: "We present calculations of the ground and excited state energies of spin defects in solids carried out on a quantum computer, using a hybrid classical/quantum protocol. We focus on the negatively charged nitrogen vacancy c... » read more

Silicon Verified ASIC Implementation for Saber


New research paper from Purdue University, KU Leuven, and Intel Labs titled "A 334uW 0.158mm2 Saber Learning with Rounding based Post-Quantum Crypto Accelerator." Abstract: "National Institute of Standard & Technology (NIST) is currently running a multi-year-long standardization procedure to select quantum-safe or post-quantum cryptographic schemes to be used in the future. Saber is the... » read more

FICS Research Institute: Detailed Assessment of the PQC Candidates To Power Side Channel Attacks


New research paper by a team of researchers from FICS Research Institute titled "PQC-SEP: Power Side-Channel Evaluation Platform for Post-Quantum Cryptography Algorithms." Abstract "Research in post-quantum cryptography (PQC) aims to develop cryptographic algorithms that can withstand classical and quantum attacks. The recent advance in the PQC field has gradually switched from the theory t... » read more

Circuit knitting Based On Quasiprobability Simulation


New paper "Circuit knitting with classical communication, " from researchers at ETH Zurich and IBM Quantum. Abstract: "The scarcity of qubits is a major obstacle to the practical usage of quantum computers in the near future. To circumvent this problem, various circuit knitting techniques have been developed to partition large quantum circuits into subcircuits that fit on smaller devices,... » read more

SCV (select, cross, and variation): Data Encryption


A new technical paper "RSCV: Reversible Select, cross and variation architecture in quantum-dot cellular automata." Abstract "In the past few years, CMOS semiconductor has been a growing and evolving technology in VLSI. However, due to the scaling issue and some other constraints like heat generation, high power consumption QCA (quantum cellular automata) emerged as an alternate and enhan... » read more

Parallel Circuit Execution & NISQ Computing


Research from LIRMM, University of Montpellier, CNRS. Abstract "Quantum computing is performed on Noisy Intermediate-Scale Quantum (NISQ) hardware in the short term. Only small circuits can be executed reliably on a quantum machine due to the unavoidable noisy quantum operations on NISQ devices, leading to the under-utilization of hardware resources. With the growing demand to access quan... » read more

Current Knowledge & Future Development In 2D Magnetic Materials Research


Abstract: "Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D... » read more

Quantum Machine Learning: Security Threats & Lines Of Defense


New research paper from Pennsylvania State University explores quantum machine learning (QML) and its use in hardware security. Find the technical paper here. April 2022. Satwik Kundu and Swaroop Ghosh. 2022. Security Aspects of Quantum Machine Learning: Opportunities, Threats and Defenses (Invited). In Proceedings of the Great Lakes Symposium on VLSI 2022 (GLSVLSI ’22), June 6–8,... » read more

Quantum logic with spin qubits crossing the surface code threshold


New research paper from QuTech, Delft University of Technology. Abstract "High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault tolerance—the ability to correct errors faster than they occur. The central requirement for fault tolerance is expressed in terms of an error threshold. Whereas the actual threshold depends o... » read more

Quantitative Study Of Quantum Phase Transitions Key To High-Temp Superconductivity (Lawrence Berkeley Nat’l Lab )


New technical paper "Evidence for a delocalization quantum phase transition without symmetry breaking in CeCoIn5"  led by Lawrence Berkeley National Laboratory in collaboration with UC Berkeley. “The hope is that our work may lead to a better understanding of superconductivity, which could find applications in next-gen energy storage, supercomputing, and magnetic levitation trains,” said f... » read more

← Older posts Newer posts →