Finding And Applying Domain Expertise In IC Analytics


Behind PowerPoint slides depicting the data inputs and outputs of a data analytics platform belies the complexity, effort, and expertise that improve fab yield. With the tsunami of data collected for semiconductor devices, fabs need engineers with domain expertise to effectively manage the data and to correctly learn from the data. Naively analyzing a data set can lead to an uninteresting an... » read more

Silicon Lifecycle Management’s Growing Impact On IC Reliability


Experts at the Table: Semiconductor Engineering sat down to talk about silicon lifecycle management, how it's expanding and changing, and where the problems are, with Prashant Goteti, principal engineer at Intel; Rob Aitken, R&D fellow at Arm; Zoe Conroy, principal hardware engineer at Cisco; Subhasish Mitra, professor of electrical engineering and computer science at Stanford University; a... » read more

Fundamental Shifts In IC Manufacturing Processes


High chip value and 3D packaging are changing where and how tests are performed, tightening design-for-reliability and accelerating the shift of tools from lab to fab. Heterogeneous integration and more domain-specific designs are causing a string of disruptions for chip manufacturers, up-ending proven fab processes and methodologies, extending the time it takes to manufacture a chip, and ul... » read more

Software-Driven and System-Level Tests Drive Chip Quality


Traditional semiconductor testing typically involves tests executed by automatic test equipment (ATE). But engineers are beginning to favor an additional late-test pass that tests systems-on-chip (SoCs) in a system context in order to catch design issues prior to end-product assembly. “System-level test (SLT) gives a high-volume environment where you can test the hardware and software toge... » read more

Auto Chipmakers Dig Down To 10ppb


How do engineers deliver 10 defective parts per billion (Dppb) to auto makers if they only screen 1 million parts per year? Answer: By comprehending failure mechanisms and proactively screening for them. Modern automobiles contain nearly 1,000 ICs that must perform over the vehicle’s life (15 years). This drives quality expectations ever higher. While 10 Dppm used to be a solid benchmark, ... » read more

HBM, Nanosheet FETs Drive X-ray Fab Use


Paul Ryan, vice president and general manager of Bruker’s X-ray Business, sat down with Semiconductor Engineering to discuss the movement of x-ray metrology into manufacturing to better control nanosheet film stacks and solder bump quality. SE: Where are you seeing the greatest growth right now, and what are the critical drivers for your technology from the application side? Ryan: One b... » read more

Unknowns Driving Up The Cost Of Auto IC Reliability


Automotive chipmakers are considering a variety of options to improve the reliability of ICs used for everything from sensors to artificial intelligence. But collectively they could boost the number of process steps, increase the time spent in manufacturing and packaging, and stir up concerns about the amount of data that needs to be collected, shared, and stored. Accounting for advanced pro... » read more

What Causes Semiconductor Aging?


Semiconductor technology has evolved to the point where no one can assume chips will last forever. If not carefully considered, aging can shorten the life of an IC below the needs for an intended application. Aging is well studied in technology circles, but while others less directly involved may understand at a general level this is a problem, it's not always obvious why. So what exactly ar... » read more

More Manufacturing Issues, More Testing


Douglas Lefever, CEO of Advantest America, sat down with Semiconductor Engineering to talk about changes in test, the impact of advanced packaging, and business changes that are happening across the flow. What follows are excerpts of that discussion. SE: What are the big changes ahead in test? Lefever: It's less about inflection points and more like moving from algebra to calculus in the ... » read more

The Gargantuan 5G Chip Challenge


Blazing fast upload and download speeds for cellular data are coming, but making the technology function as expected throughout its expected lifetime is an enormous challenge that will require substantial changes across the entire chip ecosystem. While sub-6GHz is an evolutionary step from 4G LTE, the real promise of 5G kicks in with millimeter-wave (mmWave) technology. But these higher-freq... » read more

← Older posts Newer posts →