Flexible MoS2 transistors fabricated using chemical vapor deposition.
Read the paper here. Published June 17, 2021, Nature Electronics.
Two-dimensional (2D) semiconducting transition metal dichalcogenides could be used to build high-performance flexible electronics. However, flexible field-effect transistors (FETs) based on such materials are typically fabricated with channel lengths on the micrometre scale, not benefitting from the short-channel advantages of 2D materials. Here, we report flexible nanoscale FETs based on 2D semiconductors; these are fabricated by transferring chemical-vapour-deposited transition metal dichalcogenides from rigid growth substrates together with nano-patterned metal contacts, using a polyimide film, which becomes the flexible substrate after release. Transistors based on monolayer molybdenum disulfide (MoS2) are created with channel lengths down to 60 nm and on-state currents up to 470 μA μm−1 at a drain–source voltage of 1 V, which is comparable to the performance of flexible graphene and crystalline silicon FETs. Despite the low thermal conductivity of the flexible substrate, we find that heat spreading through the metal gate and contacts is essential to reach such high current densities. We also show that the approach can be used to create flexible FETs based on molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2).
Daus, A., Vaziri, S., Chen, V. et al. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat Electron 4, 495–501 (2021). https://doi.org/10.1038/s41928-021-00598-6
AMD CTO Mark Papermaster talks about why heterogeneous architectures will be needed to achieve improvements in PPA.
Companies are speeding ahead to identify the most production-worthy processes for 3D chip stacking.
Steps are being taken to minimize problems, but they will take years to implement.
New capacity planned for 2024, but production will depend on equipment availability.
Number of options is growing, but so is the list of tradeoffs.
Increased transistor density and utilization are creating memory performance issues.
Suppliers are investing new 300mm capacity, but it’s probably not enough. And despite burgeoning 200mm demand, only Okmetic and new players in China are adding capacity.
The industry reached an inflection point where analog is getting a fresh look, but digital will not cede ground readily.
100% inspection, more data, and traceability will reduce assembly defects plaguing automotive customer returns.
Engineers are finding ways to effectively thermally dissipate heat from complex modules.
Some of the less common considerations for assessing the suitability of a system for high-performance workloads.
Different interconnect standards and packaging options being readied for mass chiplet adoption.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Leave a Reply