A technical paper titled “You Can’t See Me: Physical Removal Attacks on LiDAR-based Autonomous Vehicles Driving Frameworks” was published by researchers at University of Michigan, University of Florida and the University of Electro-Communications (Japan). This paper was included at the recent 32nd USENIX Security Symposium.
Abstract:
“Autonomous Vehicles (AVs) increasingly use LiDAR-based object detection systems to perceive other vehicles and pedestrians on the road. While existing attacks on LiDAR-based autonomous driving architectures focus on lowering the confidence score of AV object detection models to induce obstacle misdetection, our research discovers how to leverage laser-based spoofing techniques to selectively remove the LiDAR point cloud data of genuine obstacles at the sensor level before being used as input to the AV perception. The ablation of this critical LiDAR information causes autonomous driving obstacle detectors to fail to identify and locate obstacles and, consequently, induces AVs to make dangerous automatic driving decisions. In this paper, we present a method invisible to the human eye that hides objects and deceives autonomous vehicles’ obstacle detectors by exploiting inherent automatic transformation and filtering processes of LiDAR sensor data integrated with autonomous driving frameworks. We call such attacks Physical Removal Attacks (PRA), and we demonstrate their effectiveness against three popular AV obstacle detectors (Apollo, Autoware, PointPillars), and we achieve 45◦ attack capability. We evaluate the attack impact on three fusion models (Frustum-ConvNet, AVOD, and Integrated-Semantic Level Fusion) and the consequences on the driving decision using LGSVL, an industry-grade simulator. In our moving vehicle scenarios, we achieve a 92.7% success rate removing 90% of a target obstacle’s cloud points. Finally, we demonstrate the attack’s success against two popular defenses against spoofing and object hiding attacks and discuss two enhanced defense strategies to mitigate our attack.”
Find the technical paper here. August 2023.
Cao, Y., Bhupathiraju, S.H., Naghavi, P., Sugawara, T., Mao, Z.M. and Rampazzi, S., 2023. You Can’t See Me: Physical Removal Attacks on {LiDAR-based} Autonomous Vehicles Driving Frameworks. In 32nd USENIX Security Symposium (USENIX Security 23) (pp. 2993-3010).
Leave a Reply