Why a 3D understanding of complex process sequences is required to solve certain scaling challenges.
Advanced CMOS scaling and new memory technologies have introduced increasingly complex structures into the device manufacturing process. For example, the increase in NAND memory layers has achieved greater vertical NAND scaling and higher memory density, but has led to challenges in high aspect ratio etch patterning and foot print scaling issues. Unique integration and patterning schemes have been employed to solve these scaling challenges, but they create additional design rule challenges.
Two-dimensional (2D) design rule checks (DRCs) are no longer sufficient to achieve performance and yield goals, due to the 3D nature of modern semiconductor devices. Design of Experiments (DOEs) for process characterization and optimization, traditionally used to save time and cost in developing process recipes, now require hundreds of physical experiments involving significant off-process time and substantial wafer testing.
Moreover, non-intuitive interactions among process steps, as well as tightening process windows, have made it difficult to deliver concurrent performance and yield optimization using first principle modeling approaches. A 3D understanding of complex process sequences is required to solve these scaling challenges.
Click here to read more.
While terms often are used interchangeably, they are very different technologies with different challenges.
The industry is gaining ground in understanding how aging affects reliability, but more variables make it harder to fix.
Key pivot and innovation points in semiconductor manufacturing.
Tools become more specific for Si/SiGe stacks, 3D NAND, and bonded wafer pairs.
Thinner photoresist layers, line roughness, and stochastic defects add new problems for the angstrom generation of chips.
Less precision equals lower power, but standards are required to make this work.
Open-source processor cores are beginning to show up in heterogeneous SoCs and packages.
While terms often are used interchangeably, they are very different technologies with different challenges.
New applications require a deep understanding of the tradeoffs for different types of DRAM.
Open source by itself doesn’t guarantee security. It still comes down to the fundamentals of design.
How customization, complexity, and geopolitical tensions are upending the global status quo.
127 startups raise $2.6B; data center connectivity, quantum computing, and batteries draw big funding.
The industry is gaining ground in understanding how aging affects reliability, but more variables make it harder to fix.
Leave a Reply