2D Semiconductors Make Progress, But So Does Silicon


Semiconductor industry researchers have been anticipating the need for better transistor channel materials to replace silicon for a long time, but silicon devices have continued to improve enough to postpone that change. Silicon continues to provide an unmatched combination of device performance, manufacturability, and cost effectiveness. In recent years, though, the “end of silicon” cha... » read more

Research Bits: October 3


Growing indium selenide at scale Researchers from the University of Pennsylvania, Brookhaven National Laboratory, and the Air Force Research Laboratory grew the 2D semiconductor indium selenide (InSe) on a full-size, industrial-scale wafer. It can also be deposited at temperatures low enough to integrate with a silicon chip. The team noted that producing large enough films of InSe has prove... » read more

High-Performance P-Type FET Arrays With Single-Crystal 2D Semiconductors And Fermi-Level-Tuned vdW Contact Electrodes


A technical paper titled “Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes” was published by researchers at Ulsan National Institute of Science and Technology (UNIST), University of Pennsylvania, Institute for Basic Science (IBS), Sogang University, and Changwon National University. Abstract: "High-performance p-type t... » read more

Reducing Contact Resistance in Developing Transistors Based On 2D Materials


A new technical paper titled "WS2 Transistors with Sulfur Atoms Being Replaced at the Interface: First-Principles Quantum-Transport Study" was published by researchers at National Yang Ming Chiao Tung University. Abstract "Reducing the contact resistance is one of the major challenges in developing transistors based on two-dimensional materials. In this study, we perform first-principles ... » read more

Control of the Schottky barrier height in monolayer WS2 FETs using molecular doping (NIST)


A new research paper titled "Control of the Schottky barrier height in monolayer WS2 FETs using molecular doping" was published by researchers at NIST, Theiss Research, Naval Research Laboratory, and Nova Research. Abstract: "The development of processes to controllably dope two-dimensional semiconductors is critical to achieving next generation electronic and optoelectronic devices. Unde... » read more

Fermi-level Tuning Improves Device Stability of 2D Transistors With Amorphous Gate Oxides


New technical paper titled "Improving stability in two-dimensional transistors with amorphous gate oxides by Fermi-level tuning" from researchers at Institute for Microelectronics, TU Wien, AMO GmbH, University of Wuppertal, and RWTH Aachen University. Abstract "Electronic devices based on two-dimensional semiconductors suffer from limited electrical stability because charge carriers origin... » read more

Pinpointing the Dominant Component of Contact Resistance to Atomically Thin Semiconductors


Abstract "Achieving good electrical contacts is one of the major challenges in realizing devices based on atomically thin two-dimensional (2D) semiconductors. Several studies have examined this hurdle, but a universal understanding of the contact resistance and an underlying approach to its reduction are currently lacking. In this work we expose the shortcomings of the classical contact resist... » read more

Efficient Ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers


Abstract "Metal contacts to two-dimensional (2D) semiconductors are often plagued by the strong Fermi level pinning (FLP) effect which reduces the tunability of the Schottky barrier height (SBH) and degrades the performance of 2D semiconductor devices. Here, we show that MoSi2N4 and WSi2N4 monolayers—an emerging 2D semiconductor family with exceptional physical properties—exhibit stron... » read more

Power/Performance Bits: Dec. 6


Tunable 2D semiconductors Researchers from the Singapore University of Technology and Design (SUTD), Hengyang Normal University, Nanjing University, National University of Singapore, and Zhejiang University identified a family of 2D semiconductors that could have lower resistance and enable further scaling. “Due to the quantum tunnelling effect, shrinking a silicon-based transistor too sm... » read more

Nudging 2D semiconductors forward


The buzz about 2D materials replacing silicon appears to be premature. While 2D semiconductors have emerged as potential successors, it's not clear when or even if that will happen. As Iuliana Radu, Imec's director of quantum and exploratory computing observed, the “end” of silicon has been predicted many times before. It is not clear when 2D semiconductors will need to be ready. In fac... » read more

← Older posts