中文 English

Evaluating The Impact Of STI Recess Profile Control On Advanced FinFET Device Performance


In this paper, a 5nm FinFET flow was built using the SEMulator3D virtual fabrication platform. Different STI (shallow trench isolation) recess profiles were investigated using the pattern-dependent etch capabilities of SEMulator3D, including changes in trenching/footing profile, fin height and imbalance fin height. The impact of STI recess profile on device performance was then investigated usi... » read more

The Effects Of Poly Corner Etch Residue On Advanced FinFET Device Performance


In this paper, we study the effect of poly corner residue during a 5nm FinFET poly etch process using virtual fabrication. A systemic investigation was performed to understand the impact of poly corner residue on hard failure modes and device performance. Our results indicate that larger width and height residues can lead to a hard failure by creating a short between the source/drain epitaxy an... » read more

Week In Review: Manufacturing, Test


Chipmakers Here comes the battle between 5nm and 6nm processes at two foundry vendors—Samsung and TSMC. Meanwhile, Intel is behind and scrambling to get 10nm out the door. (Intel's 10nm is equivalent to 7nm from the foundries.) Last week, TSMC announced delivery of a complete version of its 5nm design infrastructure. TSMC’s 5nm technology is based on a finFET. This week, Samsung anno... » read more

Self-aligned Fin Cut Last Patterning Scheme for Fin Arrays of 24nm Pitch and Beyond


In 5nm FinFET technology and beyond, SRAM cell size reduction to 6 tracks is required with a fin pitch of 24nm. Fin depopulation is mandatory to enable area scaling, but it becomes challenging at small pitches. In the first part of our study, we simulate a FinFET process flow with various fin cut approaches to obtain a 3D model of a FinFET SRAM device. Layout dependent effects on silicon and pr... » read more