Proper residue size and variation control in the poly etch process is required to balance yield and device performance.
In this paper, we study the effect of poly corner residue during a 5nm FinFET poly etch process using virtual fabrication. A systemic investigation was performed to understand the impact of poly corner residue on hard failure modes and device performance. Our results indicate that larger width and height residues can lead to a hard failure by creating a short between the source/drain epitaxy and the metal gate. Surprisingly, a properly-sized residue can boost device performance with a greater than 8% on-state current increase and about a 50% off-state current drop, compared with having no poly corner residue. This increase in performance is primarily due to the reduction of access resistance between the source/drain and gate during the on-state, and better gate control during the off-state. This study demonstrates that proper residue size and variation control in the poly etch process is required to balance yield and device performance.
Authors: Qingpeng Wang,* Yu De Chen, Cheng Li, Rui Bao, Jacky Huang and Joseph Ervin, Coventor Inc., A Lam Research Company, Shanghai, China
Click here to read more.
100% inspection, more data, and traceability will reduce assembly defects plaguing automotive customer returns.
Engineers are finding ways to effectively thermally dissipate heat from complex modules.
Increased transistor density and utilization are creating memory performance issues.
Lots of unknowns will persist for decades across multiple market segments.
FPGAs, CPUs, and equipment receive funding in China; 98 startups raise over $2 billion.
Suppliers are investing new 300mm capacity, but it’s probably not enough. And despite burgeoning 200mm demand, only Okmetic and new players in China are adding capacity.
100% inspection, more data, and traceability will reduce assembly defects plaguing automotive customer returns.
From low resistance vias to buried power rails, it takes multiple strategies to usher in 2nm chips.
Some of the less common considerations for assessing the suitability of a system for high-performance workloads.
Manufacturing 3D structures will require atomic-level control of what’s removed and what stays on a wafer.
Different interconnect standards and packaging options being readied for mass chiplet adoption.
Engineers are finding ways to effectively thermally dissipate heat from complex modules.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Leave a Reply