Improving DRAM Device Performance Through Saddle Fin Process Optimization


As DRAM technology nodes have scaled down, access transistor issues have been highlighted due to weak gate controllability. Saddle Fins with Buried Channel Array Transistors (BCAT) have subsequently been introduced to increase channel length, prevent short channel effects, and increase data retention times [1]. However, at technology nodes beyond 20nm, securing sufficient device performance (su... » read more

Impacts Of Process Flow, Scaling, And Variability On Interconnect Performance


Virtual fabrication is used to evaluate the performance of interconnects (line and via resistance, capacitance, etc.) across pitches compatible with either EUV single exposure or SADP for three different process flows: single damascene, dual damascene, and semi-damascene (subtractive metal etch). The effects of process variation for the three flows are also investigated to determine the relativ... » read more

A Comparative Evaluation Of DRAM Bit-Line Spacer Integration Schemes


With decreasing dynamic random-access memory (DRAM) cell sizes, DRAM process development has become increasingly difficult. Bit-line (BL) sensing margins and refresh times have become problematic as cell sizes have decreased, due to an increase in BL parasitic capacitance (Cb). The main factor impacting Cb is the parasitic capacitance between the BL and the node contact (CBL-NC) [1]. To reduce ... » read more

Pathfinding By Process Window Modeling: Advanced DRAM Capacitor Patterning Process Window Evaluation Using Virtual Fabrication


In advanced DRAM, capacitors with closely packed patterning are designed to increase cell density. Thus, advanced patterning schemes, such as multiple litho-etch, SADP and SAQP processes may be needed. In this paper, we systematically evaluate a DRAM capacitor hole formation process that includes SADP and SAQP patterning, using virtual fabrication and statistical analysis in SEMulator3D. The pu... » read more

Creating Airgaps To Reduce Parasitic Capacitance In FEOL


Reducing the parasitic capacitance between the gate metal and the source/drain contact of a transistor can decrease device switching delays. One way to reduce parasitic capacitance is to reduce the effective dielectric constant of the material layers between the gate and source/drain. This can be done by creating airgaps in the dielectric material at that location. This type of work has been do... » read more

Insights Into Advanced DRAM Capacitor Patterning: Process Window Evaluation Using Virtual Fabrication


With continuous device scaling, process windows have become narrower and narrower due to smaller feature sizes and greater process step variability [1]. A key task during the R&D stage of semiconductor development is to choose a good integration scheme with a relatively large process window. When wafer test data is limited, evaluating the process window for different integration schemes can... » read more

Pathfinding By Process Window Modeling


In advanced DRAM, capacitors with closely packed patterning are designed to increase cell density. Thus, advanced patterning schemes, such as multiple litho-etch, SADP and SAQP processes may be needed. In this paper, we systematically evaluate a DRAM capacitor hole formation process that includes SADP and SAQP patterning, using virtual fabrication and statistical analysis in SEMulator3D®. The ... » read more

A Study Of The Impact Of Line Edge Roughness On Metal Line Resistance Using Virtual Fabrication


BEOL metal line RC delay has become a dominant factor limiting chip operation speeds at advanced nodes. This is because smaller metal line pitches require narrower line CD and line-to-line spacing, which introduces higher metal line resistance and line-to-line capacitance. A surface scattering effect is the root cause for the exponentially increased metal resistivity at smaller metal line pitch... » read more

Yield Enhancement By Virtual Fabrication


This paper provides an example of yield enhancement using virtual fabrication. A 6 transistors based static random access memory example on 7nm node technology was used in this case study. Yield loss caused by via contact-metal edge placement error was modeled and analyzed. The results show that yield can be enhanced from 48.4% to 99.0% through process window optimization and improved specifica... » read more

Understanding Electrical Line Resistance At Advanced Semiconductor Nodes


When evaluating shrinking metal linewidths in advanced semiconductor devices, bulk resistivity is not the sole materials property for deriving electrical resistance. At smaller line dimensions, local resistivity is dominated by grain boundary effects and surface scattering. Consequently, resistivity varies throughout a line, and resistance extraction needs to account for these secondary phenome... » read more

← Older posts