中文 English

Yield Enhancement By Virtual Fabrication


This paper provides an example of yield enhancement using virtual fabrication. A 6 transistors based static random access memory example on 7nm node technology was used in this case study. Yield loss caused by via contact-metal edge placement error was modeled and analyzed. The results show that yield can be enhanced from 48.4% to 99.0% through process window optimization and improved specifica... » read more

Understanding Electrical Line Resistance At Advanced Semiconductor Nodes


When evaluating shrinking metal linewidths in advanced semiconductor devices, bulk resistivity is not the sole materials property for deriving electrical resistance. At smaller line dimensions, local resistivity is dominated by grain boundary effects and surface scattering. Consequently, resistivity varies throughout a line, and resistance extraction needs to account for these secondary phenome... » read more

Evaluating The Impact Of STI Recess Profile Control On Advanced FinFET Performance


Profile variation is one of the most important problems during semiconductor device manufacturing and scaling. These variations can degrade both chip yield and device performance.  Virtual fabrication can be used to study profile variation in a very effective and economical manner and avoid process cycle time and wafer cost in the fab. In this short article, we will review the impact of STI (s... » read more

The Effects Of Poly Corner Etch Residue On Advanced FinFET Device Performance


In this paper, we study the effect of poly corner residue during a 5nm FinFET poly etch process using virtual fabrication. A systemic investigation was performed to understand the impact of poly corner residue on hard failure modes and device performance. Our results indicate that larger width and height residues can lead to a hard failure by creating a short between the source/drain epitaxy an... » read more

An Introduction To Virtual Semiconductor Process Evaluation


Process engineers develop ideal solutions to engineering problems using a logical theoretical framework combined with logical engineering steps. Unfortunately, many process engineering problems cannot be solved with a brute force, step by step approach to understand every cause-and-effect relationship. There are simply too many process recipe variables that can be modified to make a brute-force... » read more

Process Window Optimization Of DRAM By Virtual Fabrication


New integration and patterning schemes used in 3D memory and logic devices have created manufacturing and yield challenges. Industrial focus has shifted from the scaling of predictable unit processes in 2D structures to the more challenging full integration of complex 3D structures. Conventional 2D layout DRC, offline wafer metrology, and offline electrical measurements are no longer sufficient... » read more

Process Variation Analysis of Device Performance Using Virtual Fabrication


A new methodology is demonstrated to assess the impact of fabrication inherent process variability on 14-nm fin field effect transistor (FinFET) device performance. A model of a FinFET device was built using virtual device fabrication and testing. The model was subsequently calibrated on Design of Experiment corner case data that had been collected on a limited number of processed fab wafers. W... » read more

The Impact Of EUV Resist Thickness On Via Patterning Uniformity


Via patterning at advanced nodes requires extremely low critical dimension (CD) values, typically below 30nm. Controlling these dimensions is a serious challenge, since there are many inherent sources of variation during lithography and etch processing. Coventor personnel, in conjunction with our colleagues from ASML and imec, recently looked at the impact of Extreme Ultraviolet lithography (EU... » read more

Defect Evolution In Next Generation, Extreme Ultraviolet Lithography


Extreme ultraviolet (EUV) lithography is a promising next generation lithography technology that may succeed optical lithography at future technology nodes. EUV mask infrastructure and manufacturing of defect-free EUV mask blanks is a key near term challenge in the use of EUV lithography. Virtual fabrication is a computerized technique to perform predictive, three dimensional modeling of sem... » read more

Speeding Up Process Optimization Using Virtual Fabrication


Author: Joseph Ervin Director, Semiconductor Process and Integration Lam Research Advanced CMOS scaling and new memory technologies have introduced increasingly complex structures into the device manufacturing process. For example, the increase in NAND memory layers has achieved greater vertical NAND scaling and higher memory density, but has led to challenges in high aspect ratio etch patte... » read more

← Older posts