Where Timing And Voltage Intersect


João Geada, chief technologist at ANSYS, talks about the limitations for power delivery networks and what processors can handle, why the current solutions to these issues are causing failures, and how voltage reduction can affect timing. » read more

The MCU Dilemma


The humble microcontroller is getting squeezed on all sides. While most of the semiconductor industry has been able to take advantage of Moore's Law, the MCU market has faltered because flash memory does not scale beyond 40nm. At the same time, new capabilities such as voice activation and richer sensor networks are requiring inference engines to be integrated for some markets. In others, re... » read more

Extreme Quality Semiconductor Manufacturing


By Ben Tsai and Cathy Perry Sullivan Across the full range of semiconductor device types and design nodes, there is a drive to produce chips with significantly higher quality. Automotive, IoT and other industrial applications require chips that achieve very high reliability over a long period of time, and some of these chips must maintain reliable performance while operating in an environmen... » read more

More Data, More Problems In Automotive


The race toward increasing levels of autonomy is being hampered by competitive concerns over sharing data across the automotive supply chain. Pushing past the initial ADAS levels into full autonomy is expected to take more than a decade, but the infrastructure for those systems, and making sure all assisted and autonomous vehicles work with other vehicles, is under development today. Still, ... » read more

Going On the Edge


Emmanuel Sabonnadière, chief executive of Leti, sat down with Semiconductor Engineering to talk about artificial intelligence (AI), edge computing and chip technologies. What follows are excerpts of that conversation. SE: Where is AI going in the future? Sabonnadière: I am a strong believer that edge AI will change our lives. Today’s microelectronics are organized with 80% of things i... » read more

Finding Defects In EUV Masks


Extreme ultraviolet (EUV) lithography is finally in production at advanced nodes, but there are still several challenges with the technology, such as EUV mask defects. Defects are unwanted deviations in chips, which can impact yield and performance. They can crop up during the chip manufacturing process, including the production of a mask or photomask, sometimes called a reticle. Fortunately... » read more

5/3nm Wars Begin


Several foundries are ramping up their new 5nm processes in the market, but now customers must decide whether to design their next chips around the current transistor type or move to a different one at 3nm and beyond. The decision involves the move to extend today’s finFETs to 3nm, or to implement a new technology called gate-all-around FETs (GAA FETs) at 3nm or 2nm. An evolutionary step f... » read more

Dealing With ECOs In Complex Designs


Namsuk Oh, R&D principal engineer at Synopsys, talks about the impact of more corners and engineering change orders, how that needs to be addressed in the flow to close timing, and how dependencies can complicate any changes that are required. » read more

How Chips Age


Andre Lange, group manager for quality and reliability at Fraunhofer IIS’ Engineering of Adaptive Systems Division, talks about circuit aging, whether current methods of predicting reliability are accurate for chips developed at advanced process nodes, and where additional research is needed. » read more

More Knobs, Fewer Markers


The next big thing in chip design may be really big — the price tag. In the past, when things got smaller, so did the cost per transistor. Now they are getting more expensive to design and manufacture, and the cost per transistor is going up along with the number of transistors per area of die, and in many cases even the size of the die. That's not exactly a winning economic formula, which... » read more

← Older posts Newer posts →