Timing Closure Issues Resurface


Timing closure has resurfaced as a major challenge at 10nm and 7nm due to more features and power modes, increased process variation and other manufacturing-related issues. While timing-related problems are roughly correlated to rising complexity in semiconductors, they tend to generate problems in waves—about once per decade. In SoCs, timing closure problems have spawned entire methodolog... » read more

Optimizing Multiple IoT Layers


As the number of connected devices rises, so do questions about how to optimize them for target markets, how to ensure they play nicely together, and how to bring them to market quickly and inexpensively. [getkc id="76" kc_name="IoT"] is broad term that encompasses a lot of disparate pieces for devices, systems, and connected systems. At the highest levels are hardware and software, but with... » read more

7nm Design Success Starts With Multi-Domain Multi-Physics Analysis


Companies can benefit from advancements in the latest semiconductor process technology by delivering smaller, faster and lower power products, especially for those servicing mobile, high performance computing and automotive ADAS applications. By using 7nm processes, design teams are able to add a lot more functionality onto a single chip and lower the power consumption by scaling operating volt... » read more

Multi-Patterning Issues At 7nm, 5nm


Continuing to rely on 193nm immersion lithography with multiple patterning is becoming much more difficult at 7nm and 5nm. With the help of various resolution enhancement techniques, optical lithography using a deep ultraviolet excimer laser has been the workhorse patterning technology in the fab since the early 1980s. It is so closely tied with the continuation of [getkc id="74" comment="Mo... » read more

And The Award Goes To…


I like to look at what users find the most interesting topics, not because it directly influences what I write, but to get a sense of the subjects that are on most people's minds. Some of it comes as no surprise. Content about new fabrication technologies tends to blow everything else away. While it directly affects very few of us, I think we all want to know the general direction of the indust... » read more

Can We Measure Next-Gen FinFETs?


After ramping up their respective 16nm/14nm finFET processes, chipmakers are moving towards 10nm and/or 7nm, with 5nm in R&D. But as they move down the process roadmap, they will face a new set of fab challenges. In addition to lithography and interconnects, there is metrology. Metrology, the science of measurements, is used to characterize tiny films and structures. It helps to boost yi... » read more

Measuring Atoms And Beyond


David Seiler, chief of the Engineering Physics Division within the Physical Measurement Laboratory at the National Institute of Standards and Technology (NIST), sat down with Semiconductor Engineering to discuss the current and future directions of metrology. NIST, a physical science laboratory, is part of the U.S. Department of Commerce. What follows are excerpts of that conversation. SE: W... » read more

More EUV Mask Gaps


Extreme ultraviolet (EUV) lithography is at a critical juncture. After several delays and glitches, [gettech id="31045" comment="EUV"] is now targeted for 7nm and/or 5nm. But there are still a number of technologies that must come together before EUV is inserted into mass production. And if the pieces don’t fall into place, EUV could slip again. First, the EUV source must generate more ... » read more

Why EUV Is So Difficult


For years, extreme ultraviolet (EUV) lithography has been a promising technology that was supposed to help enable advanced chip scaling. But after years of R&D, EUV is still not in production despite major backing from the industry, vast resources and billions of dollars in funding. More recently, though, [gettech id="31045" comment="EUV"] lithography appears to be inching closer to pos... » read more

7nm Power Issues And Solutions


Being able to achieve 35% speed improvement, 65% power reduction and 3.3X higher density makes adopting a 7nm process for your next system-on-chip (SoC) design seem like an easy decision. However, with $271 million in estimated total design cost and 500 man-years it would take to bring a mid-range 7nm SoC to production, companies need to carefully weigh the benefits against the cost of designin... » read more

← Older posts Newer posts →