Taking A Pulse On The IC Biz


It’s been a difficult period for the semiconductor industry. The coronavirus outbreak has put a damper on what was supposed to be a strong year in the semiconductor industry in 2020. Many are holding out hopes for a rebound in the second half of the year. That’s still a big unknown. The forecasts are gloomy. For example, VLSI Research has three different scenarios for the semiconduc... » read more

Power Becomes Bigger Concern For Embedded Processors


Power is emerging as the dominant concern for embedded processors even in applications where performance is billed as the top design criteria. This is happening regardless of the end application or the process node. In some high-performance applications, power density and thermal dissipation can limit how fast a processor can run. This is compounded by concerns about cyber and physical secur... » read more

NVM Reliability Challenges And Tradeoffs


This second of two parts looks at different memories and possible solutions. Part one can be found here. While various NVM technologies, such as PCRAM, MRAM, ReRAM and NRAM share similar high-level traits, their physical renderings are quite different. That provides each with its own set of challenges and solutions. PCRAM has had a fraught history. Initially released by Samsung, Micron, a... » read more

2.5D Architecture Answers AI Training’s Call for “All of the Above”


The impact of AI/ML grows daily impacting every industry and touching the lives of everyone. In marketing, healthcare, retail, transportation, manufacturing and more, AI/ML is a catalyst for great change. This rapid advance is powerfully illustrated by the growth in AI/ML training capabilities which have since 2012 grown by a factor of 10X every year. Today, AI/ML neural network training mod... » read more

What Is DRAM’s Future?


Memory — and DRAM in particular — has moved into the spotlight as it finds itself in the critical path to greater system performance. This isn't the first time DRAM has been the center of attention involving performance. The problem is that not everything progresses at the same rate, creating serial bottlenecks in everything from processor performance to transistor design, and even the t... » read more

Auto Outlook: Down But Not Out


For years, automotive has been an engine of growth in the semiconductor industry, although the market is expected to decline in 2020. Several types of chips are used in automobiles, such as analog, memory, microcontrollers, processors and RF. But the automotive IC business still represents a small percentage of the overall semiconductor market. It pales in comparison to the smartphone chip m... » read more

HBM Issues In AI Systems


All systems face limitations, and as one limitation is removed, another is revealed that had remained hidden. It is highly likely that this game of Whac-A-Mole will play out in AI systems that employ high-bandwidth memory (HBM). Most systems are limited by memory bandwidth. Compute systems in general have maintained an increase in memory interface performance that barely matches the gains in... » read more

Testing Embedded MRAM IP For SoCs


The challenges of embedded memory test and repair are well known, including maximizing fault coverage to prevent test escapes and using spare elements to maximize manufacturing yield. With the surge in availability of promising non-volatile memory architectures to augment and potentially replace traditional volatile memories, a new set of SoC level memory test and repair challenges are emerging... » read more

MRAM Process Development And Production Briefing


By Dr. Meng Zhu, Dr. Roman Sappey, and Jeff Barnum MRAM (Magnetoresistive Random-Access Memory) is a type of non-volatile memory (NVM) that utilizes magnetic states to store information. The basic structure of MRAM is a magnetic-tunnel junction (MTJ), which consists of two ferromagnetic (FM) layers separated by an insulating tunnel barrier (Fig.1). When the magnetizations of the two magnetic... » read more

A New Breed Of Engineer


The industry loves to move in straight lines. Each generation of silicon is more-or-less a linear extrapolation of what came before. There are many reasons for this – products continue to evolve within the industry, adding new or higher performance interfaces, risk levels are lower when the minimum amount is changed for any chip spin, existing software is more likely to run with only minor mo... » read more

← Older posts Newer posts →