Going Vertical?


The topic of transistor scaling has been traditionally covered at SEMICON West in its own right. This year’s event, however, will also explore scaling in 3D, as well as using packaging to accomplish similar objectives. Along with traditional transistor scaling, speakers will tackle design and metrology considerations for scaling the package, and address the economic decisions that inform dens... » read more

2.5D, Fan-Out Inspection Issues Grow


As advanced packaging moves into the mainstream, packaging houses and equipment makers are ratcheting up efforts to solve persistent metrology and inspection issues. The goal is to lower the cost of fan-outs, [getkc id="82" kc_name="2.5D"] and [getkc id="42" kc_name="3D-IC"], along with a number of other packaging variants consistent with the kinds of gains that are normally associated with Moo... » read more

Wirebond Technology Rolls On


Several years ago, many predicted the demise of an older interconnect packaging technology called wire bonding, prompting the need for more advanced packaging types. Those predictions were wrong. The semiconductor industry today uses several advanced packaging types, but wire bonding has been reinvented over the years and remains the workhorse in packaging. For example, Advanced Semiconducto... » read more

Intel Inside The Package


Mark Bohr, senior fellow and director of process architecture and integration at Intel, sat down with Semiconductor Engineering to discuss the growing importance of multi-chip integration in a package, the growing emphasis on heterogeneity, and what to expect at 7nm and 5nm. What follows are excerpts of that interview. SE: There’s a move toward more heterogeneity in designs. Intel clearly ... » read more

2.5D Adds Test Challenges


OSATs and ATE vendors are making progress in determining what works and what doesn't in 2.5D packaging, expanding their knowledge base as this evolves into a mainstream technology. A [getkc id="82" kc_name="2.5D"] package generally includes an ASIC connected to a stack of memory chips—usually high-bandwidth memory—using an [getkc id="204" kc_name="interposer"] or some type of silicon bri... » read more

BEOL Issues At 10nm And 7nm (Part 1)


Semiconductor Engineering sat down to discuss problems with the back end of line at leading-edge nodes with Craig Child, senior manager and deputy director for [getentity id="22819" e_name="GlobalFoundries'"] advanced technology development integration unit; Paul Besser, senior technology director at [getentity id="22820" comment="Lam Research"]; David Fried, CTO at [getentity id="22210" e_name... » read more

TSVs: Copper, Silicon, And CTE Mismatch


As previous articles in this series have discussed, advanced packages introduce new materials and new reliability concerns. Diffusion into solder bumps can create brittle, high resistance, intermetallic compounds. Heat transfer through an interposer can degrade the lifetime of even cool, low power chips. Still, through-silicon vias are unique in that they cut directly through the integrated cir... » read more

Advanced Packaging Options, Issues


Systems in package are heading for the mass market in applications that demand better performance and lower power. As they do, new options for cutting costs are being developed to broaden the appeal of this approach as an alternative to shrinking features. Cost has been one of the big deterrents for widespread adoption of [getkc id="82" kc_name="2.5D"]. Initially, the almost universal compla... » read more

One-On-One: Dave Hemker


Dave Hemker, CTO at [getentity id="22820" comment="Lam Research"], sat down with Semiconductor Engineering to look at some of the key issues on the process and manufacturing side, and some of the key developments that will reshape the semiconductor industry in the future. What follows are excerpts of that conversation. SE: One of the big discussion topics these days is [getkc id="208" commen... » read more

Keeping The Whole Package Cool


Heat dissipation is a critical issue for designers of complex chip-stacking and system-in-package devices. The amount of heat generated by a device increases as the number of transistors goes up, but the ability to dissipate the heat depends on the package surface area. Because the goal of 3D packaging is to squeeze more transistors into less overall space, new heat dissipation issues are em... » read more

← Older posts Newer posts →