中文 English

Simplifying AI Edge Deployment


Barrie Mullins, vice president of product at Flex Logix, explains how a programmable accelerator chip can simplify semiconductor design at the edge, where chips need to be high performance as well as low power, yet developing everything from scratch is too expensive and time-consuming. Programmability allows these systems to stay current with changes in algorithms, which can affect everything f... » read more

Algorithm HW Framework That Minimizes Accuracy Degradation, Data Movement, And Energy Consumption Of DNN Accelerators (Georgia Tech)


This new research paper titled "An Algorithm-Hardware Co-design Framework to Overcome Imperfections of Mixed-signal DNN Accelerators" was published by researchers at Georgia Tech. According to the paper's abstract, "In recent years, processing in memory (PIM) based mixed-signal designs have been proposed as energy- and area-efficient solutions with ultra high throughput to accelerate DNN com... » read more

Machine Learning Application For Early Power Analysis Accuracy Improvement


In this paper, we introduce a machine learning (ML) application that accurately estimates the switching power of the cells without needing the SPEF file (SPEF less PA flow). Three ML models (multi-linear regression, random forest and decision tree) were trained and tested on different industrial designs at 7nm technology. They are trained using different cells’ properties available, SPEF, and... » read more

Architecting Faster Computers


To create faster computers, the industry must take a major step back and re-examine choices that were made half a century ago. One of the most likely approaches involves dropping demands for determinism, and this is being attempted in several different forms. Since the establishment of the von Neumann architecture for computers, small, incremental improvements have been made to architectures... » read more

Gaps In The AI Debug Process


When an AI algorithm is deployed in the field and gives an unexpected result, it's often not clear whether that result is correct. So what happened? Was it wrong? And if so, what caused the error? These are often not simple questions to answer. Moreover, as with all verification problems, the only way to get to the root cause is to break the problem down into manageable pieces. The semico... » read more

Improving Accuracy In Satellite Navigation Systems


Increasing dependency on the global navigation satellite system (GNSS) constellations is raising concerns about what happens when signals are unavailable, even for short periods of time. GNSS systems affect our daily lives in ways we often don’t see, from location services to cell phone timing. In fact, these satellites have become a necessary part of critical infrastructure, and higher ac... » read more

Roadblocks For ML in EDA


Is EDA a suitable space for utilizing machine learning (ML)? The answer depends on a number of factors, including where exactly it is being applied, how much support there is from the industry, and whether there are demonstrable advantages. Exactly where ML will play a role has yet to be decided. Replacing existing heuristics with machine learning, for example, would require an industry-wide... » read more

How To Measure ML Model Accuracy


Machine learning (ML) is about making predictions about new data based on old data. The quality of any machine-learning algorithm is ultimately determined by the quality of those predictions. However, there is no one universal way to measure that quality across all ML applications, and that has broad implications for the value and usefulness of machine learning. “Every industry, every d... » read more

Hidden Costs In Faster, Low-Power AI Systems


Chipmakers are building orders of magnitude better performance and energy efficiency into smart devices, but to achieve those goals they also are making tradeoffs that will have far-reaching, long-lasting, and in some cases unknown impacts. Much of this activity is a direct result of pushing intelligence out to the edge, where it is needed to process, sort, and manage massive increases in da... » read more

Neural Networks Without Matrix Math


The challenge of speeding up AI systems typically means adding more processing elements and pruning the algorithms, but those approaches aren't the only path forward. Almost all commercial machine learning applications depend on artificial neural networks, which are trained using large datasets with a back-propagation algorithm. The network first analyzes a training example, typically assign... » read more

← Older posts