中文 English

Nanosheet FETs Drive Changes In Metrology And Inspection


In the Moore’s Law world, it has become a truism that smaller nodes lead to larger problems. As fabs turn to nanosheet transistors, it is becoming increasingly challenging to detect line-edge roughness and other defects due to the depths and opacities of these and other multi-layered structures. As a result, metrology is taking even more of a hybrid approach, with some well-known tools moving... » read more

Atomic Force Microscopy Covers The Landscape Of Polymer Characterization


"Materials scientists designing a polymer-based material for a specific application must analyze how and why all these factors come together to impact the final product. Understanding the structure and properties at the microscopic level is critical to a complete understanding of the material. “Everybody wants to make their materials perform better at the macroscale,” says Bede Pittenger, a... » read more

Angstrom-Level Measurements With AFMs


Competition is heating up in the atomic force microscopy (AFM) market, where several vendors are shipping new AFM systems that address various metrology challenges in packaging, semiconductors and other fields. AFM, a small but growing field that has been under the radar, involves a standalone system that provides surface measurements on structures down to the angstrom level. (1 angstrom = 0... » read more

Manufacturing Bits: July 30


Scanning nanopore microscopes ETH Zurich has developed a new microscopy technique that can detect and analyze signals between individual cells in living organisms. The technology, called a force-controlled scanning nanopore microscope, is a new way to look at the behavior of individual cells. So far, researchers have tested the technology on rat brain tissue. It could one day be used to pro... » read more

Manufacturing Bits: Sept. 24


LEGO AFM Students from the University College London (UCL), Tsinghua University and Peking University have built an atomic force microscope (AFM) or nanoscope using toy LEGOs. The AFM, dubbed LEGO2NANO, costs less than $500 to make. In contrast, traditional AFMs cost $100,000 or more. The system was made using LEGOs, Arduino controllers, 3D printed parts and consumer electronics. [captio... » read more