Power-Aware Test: Beyond Low-Power Test


By Rahul Singhal and Likith Kumar Manchukonda Power consumption is one of the key considerations when designing today’s semiconductor chips and systems. Over the years, the constant need for higher performance and more functions from the chips has been driving the continuous requirement for higher transistor density. The process node scaling makes this possible by reducing transistor sizes... » read more

Testability Analysis Based On Ever-Evolving Technology


The complexity of system-on-chip (SoC) designs continues to grow, so the corresponding design-for-test (DFT) logic required for manufacturing has become more advanced. Design teams are challenged by high gate counts and an array of internally developed and third-party IP integrated into their designs. Understanding if one can create high-quality manufacturing tests for these complex designs mus... » read more

Improving Concurrent Chip Design, Manufacturing, And Test Flows


Semiconductor design, manufacturing, and test are becoming much more tightly integrated as the chip industry seeks to optimize designs using fewer engineers, setting the stage for greater efficiencies and potentially lower chip costs without just relying on economies of scale. The glue between these various processes is data, and the chip industry is working to weave together various steps t... » read more

Testing The Stack: DFT Is Ready For 3D Devices


When existing advanced 2D designs already push the limits of design-for-test (DFT) tools, what hope do developers have of managing DFT for 3D devices? Can anyone afford the tool run time, on-chip area demand, pattern count, and test time? The answer, from an array of experts, is yes, there is a path to a scalable, affordable, and comprehensive DFT solution for 3D ICs. Well-covered strategies... » read more

Auto Chipmakers Dig Down To 10ppb


How do engineers deliver 10 defective parts per billion (Dppb) to auto makers if they only screen 1 million parts per year? Answer: By comprehending failure mechanisms and proactively screening for them. Modern automobiles contain nearly 1,000 ICs that must perform over the vehicle’s life (15 years). This drives quality expectations ever higher. While 10 Dppm used to be a solid benchmark, ... » read more

Preparing For Test Early In The Design Flow


Until very recently, semiconductor design, verification, and test were separate domains. Those domains have since begun to merge, driven by rising demand for reliability, shorter market windows, and increasingly complex chip architectures. In the past, products were designed from a functional perspective, and designers were not concerned about what the physical implementation of the product ... » read more

Total Critical Area For Optimizing Test Patterns


Increasing complexity at advanced nodes makes it much harder to locate defects and latent defects because there is more surface area to cover and much less space between the various components in a leading-edge chip design. Ron Press, technology enablement director at Siemens Digital Industries Software, talks about why it’s so important to predict where defects are most likely to occur in th... » read more

Power-Aware Test: Addressing Power Challenges In DFT And Test


Integrated circuit (IC) sizes continue to grow as they meet the compute requirements of cutting-edge applications such as artificial intelligence (AI), autonomous driving, and data centers. As design sizes increase, the total power consumption of the chip also increases. While process node scaling reduces a transistor’s size and its operating-voltage, power scaling has not kept up with the si... » read more

Signal Connectivity Checks Are Not Just For Design-For-Test Teams


By Pawini Mahajan and Raja Koneru The complexity with system-on-chip (SoC) design continues to grow, creating greater complexity of the corresponding design-for-test (DFT) logic required for manufacturing tests. Design teams are challenged not only by high gate counts and the array of internally developed and third-party IP integrated into their designs: the need to achieve high-quality manu... » read more

Merging Verification And Test


While the disciplines of functional verification and test serve different purposes, their histories were once closely intertwined. Recent safety and security monitoring requirements coupled with capabilities being embedded into devices is bringing them closer together again, but can they successfully cooperate to bring about improvements in both? Getting there may be difficult. Three phases ... » read more

← Older posts Newer posts →