How Metrology Tools Stack Up In 3D NAND Devices


Multiple innovations in semiconductor processing are needed to enable 3D NAND bit density increases of about 30% per year at ever-decreasing cost per bit, all of which will be required to meet the nonvolatile storage needs of the big data era. 3D NAND is the first truly three-dimensional device in production. It is both a technology driver for new metrology methods and a significant part of ... » read more

Speeding Up The R&D Metrology Process


Several chipmakers are making some major changes in the characterization/metrology lab, adding more fab-like processes in this group to help speed up chip development times. The characterization/metrology lab, which is generally under the radar, is a group that works with the R&D organization and the fab. The characterization lab is involved in the early analytical work for next-generati... » read more

Metrology Challenges For Gate-All-Around


Metrology is proving to be a major challenge for those foundries working on processes for gate-all-around FETs at 3nm and beyond. Metrology is the art of measuring and characterizing structures in devices. Measuring and characterizing structures in devices has become more difficult and expensive at each new node, and the introduction of new types of transistors is making this even harder. Ev... » read more

Making Chips At 3nm And Beyond


Select foundries are beginning to ramp up their new 5nm processes with 3nm in R&D. The big question is what comes after that. Work is well underway for the 2nm node and beyond, but there are numerous challenges as well as some uncertainty on the horizon. There already are signs that the foundries have pushed out their 3nm production schedules by a few months due to various technical issu... » read more

3D NAND Metrology Challenges Growing


3D NAND vendors face several challenges to scale their devices to the next level, but one manufacturing technology stands out as much more difficult at each turn—metrology. Metrology, the art of measuring and characterizing structures, is used to pinpoint problems and ensure yields for all chip types. In the case of 3D NAND, the metrology tools are becoming more expensive at each iteration... » read more

Can We Measure Next-Gen FinFETs?


After ramping up their respective 16nm/14nm finFET processes, chipmakers are moving towards 10nm and/or 7nm, with 5nm in R&D. But as they move down the process roadmap, they will face a new set of fab challenges. In addition to lithography and interconnects, there is metrology. Metrology, the science of measurements, is used to characterize tiny films and structures. It helps to boost yi... » read more

Measuring Atoms And Beyond


David Seiler, chief of the Engineering Physics Division within the Physical Measurement Laboratory at the National Institute of Standards and Technology (NIST), sat down with Semiconductor Engineering to discuss the current and future directions of metrology. NIST, a physical science laboratory, is part of the U.S. Department of Commerce. What follows are excerpts of that conversation. SE: W... » read more

Measuring FinFETs Will Get Harder


The industry is gradually migrating toward chips based on finFET transistors at 16nm/14nm and beyond, but manufacturing those finFETs is proving to be a daunting challenge in the fab. Patterning is the most difficult process for finFETs. But another process, metrology, is fast becoming one of the biggest challenges for the next-generation transistor technology. In fact, [getkc id="252" kc_n... » read more

Inside X-ray Metrology


Chipmakers are ramping up a new class of chip architectures, such as 3D NAND and finFETs. Measuring and characterizing the tiny structures in these technologies is a major challenge. It will not only take the traditional metrology tools, but also various X-ray techniques. To get a handle on X-ray metrology, Semiconductor Engineering recently discussed the trends with the following experts: ... » read more

Waiting For Next-Gen Metrology


Chipmakers continue to march down the various process nodes, but the industry will require new breakthroughs to extend IC scaling at 10nm and beyond. In fact, the industry will require innovations in at least two main areas—patterning and the [getkc id="36" comment="Interconnect"]. There are other areas of concern, but one technology is quickly rising near the top of the list—metrology.... » read more

← Older posts