Addressing Trench Structures And Larger Wafers For Power Devices


Wind power. Rail. Solar energy. And, perhaps most significantly, electric and hybrid vehicles. Together, these four forces are among the major demand drivers for power devices. While silicon (Si) still plays a role in power devices, wide-bandgap compound semiconductors like silicon carbide (SiC) and gallium nitride (GaN) are particularly well-suited for power devices thanks to their higher e... » read more

Unleashing the Potential of Compound Semiconductors: Industry Leaders Collaborate at SEMICON Taiwan 2022 to Create Ecosystem


Delivering high-speed processing over 100 times faster than silicon, compound semiconductors have made the devices a magnet for developers of leading-edge technologies out to maximize performance in key segments including automotive, data centers and communications. With the rising profile of compound semiconductors as the backdrop, leading experts gathered at the Power and Opto Semiconductor F... » read more

A Star Is Born: Gallium Nitride And The Coming Age Of Compound Semiconductors


Not so long ago, Blu-ray was hailed as a technological advancement in the world of digital video. But in the streaming era, Blu-ray’s luster has faded. However, the technology responsible for the blue laser diode that gave the Blu-ray player its name – gallium nitride (GaN) – is emerging as one of a number of exciting new developments in the semiconductor industry. Today, GaN is used b... » read more

On The Reverse Breakdown Behavior Of GaAs PIN Diodes For High Power Applications


In the field of power electronics, the compound semiconductors gallium nitride and silicon carbide are dominating the market. Due to its beneficial properties, gallium arsenide is gaining more and more importance. The aim is to manufacture devices based on gallium arsenide for use in power electronics with comparable or better properties, but at lower costs. In this work, a first GaAs PIN diode... » read more

Compound Semiconductor Innovation Advances EVs And Other Green Technologies


As the world works to reduce greenhouse gas emissions, global adoption of electric vehicles (EVs) is driving an increased demand for high-power, energy-efficient compound semiconductors, such as silicon carbide (SiC)-based components, throughout the entire EV assembly process. Renewable energy technology is now at the forefront of climate-forward research, with accelerating EV sales playing�... » read more

Foundry Wars Begin


Leading-edge foundry vendors are gearing up for a new, high-stakes spending and technology race, setting the stage for a possible shakeup across the semiconductor manufacturing landscape. In March, Intel re-entered the foundry business, positioning itself against Samsung and TSMC at the leading edge, and against a multitude of foundries working at older nodes. Intel announced plans to build ... » read more

How Chips Age


Andre Lange, group manager for quality and reliability at Fraunhofer IIS’ Engineering of Adaptive Systems Division, talks about circuit aging, whether current methods of predicting reliability are accurate for chips developed at advanced process nodes, and where additional research is needed. » read more

Power Semi Wars Begin


Several vendors are rolling out the next wave of power semiconductors based on gallium nitride (GaN) and silicon carbide (SiC), setting the stage for a showdown against traditional silicon-based devices in the market. Power semiconductors are specialized transistors that incorporate different and competitive technologies like GaN, SiC and silicon. Power semis operate as a switch in high-volt... » read more

System Bits: May 21


Washable, wearable energy devices for clothing Researchers at the University of Cambridge collaborated with colleagues at China’s Jiangnan University to develop wearable electronic components that could be woven into fabrics for clothing, suitable for energy conversion, flexible circuits, health-care monitoring, and other applications. Graphene and other materials can be directly incorpor... » read more