MMAF Option Enables Picoampere Measurements


By Yoshiyuki Aoki and Tsunetaka Akutagawa Demand for low-current devices is increasing, as many new sensors are being created for medical, automotive, industrial, and other applications. Chief among the heightened production and test requirements for these low-current devices is the need to achieve picoampere (pA)-class measurements. Sensors’ functionality and efficacy, especially in medic... » read more

Cryogenic CMOS Becomes Cool


Cryogenic CMOS is a technology on the cusp, promising higher performance and lower power with no change in fabrication technology. The question now is whether it becomes viable and mainstream. Technologies often appear to be just on the horizon, not quite making it, but never too far out of sight. That's usually because some issue plagues it, and the incentive is not big enough to solve the ... » read more

Evaluating The Impact Of STI Recess Profile Control On Advanced FinFET Device Performance


In this paper, a 5nm FinFET flow was built using the SEMulator3D virtual fabrication platform. Different STI (shallow trench isolation) recess profiles were investigated using the pattern-dependent etch capabilities of SEMulator3D, including changes in trenching/footing profile, fin height and imbalance fin height. The impact of STI recess profile on device performance was then investigated usi... » read more

New Transistor Structures At 3nm/2nm


Several foundries continue to develop new processes based on next-generation gate-all-around transistors, including more advanced high-mobility versions, but bringing these technologies into production is going to be difficult and expensive. Intel, Samsung, TSMC and others are laying the groundwork for the transition from today’s finFET transistors to new gate-all-around field-effect trans... » read more

The Growing Challenge Of Thermal Guard-Banding


Guard-banding for heat is becoming more difficult as chips are used across a variety of new and existing applications, forcing chipmakers to architect their way through increasingly complex interactions. Chips are designed to operate at certain temperatures, and it is common practice to develop designs with some margin to ensure correct functionality and performance throughout the operat... » read more

Near-Threshold Computing


The emergence of the Internet of Things (IoT) has brought a lot of attention to the need for extremely low-power design, and this in turn has increased the pressure for voltage reduction. In the past, each new process node shrunk the feature size and lowered the nominal operating voltage. This resulted in a drop in power consumption. However, the situation changed at about 90nm in two ways. ... » read more

Rightsizing Challenges Grow


Rightsizing chip architectures is getting much more complicated. There are more options to choose from, more potential bottlenecks, and many more choices about what process to use at what process node and for which markets and price points. Rightsizing is a way of targeting chips to specific application needs, supplying sufficient performance while minimizing power and cost. It has been a to... » read more

FinFET Learning


FinFETs are not simple to work with. They’re difficult to manufacture, tricky to design, and they run the risk of greatly increased dynamic power density—particularly at 14/16nm, where extra margin is hard to justify—which affects everything from electromigration to signal integrity. Moreover, while finFETs have been on the drawing board for more than a decade, it’s taken four years ... » read more