Predicting And Avoiding Failures In Automotive Chips


Semiconductor Engineering sat down to discuss automotive electronics reliability with Jay Rathert, senior director of strategic collaborations at KLA; Dennis Ciplickas, vice president of advanced solutions at PDF Solutions; Uzi Baruch, vice president and general manager of the automotive business unit at OptimalPlus; Gal Carmel, general manager of proteanTecs' Automotive Division; Andre van de ... » read more

What Do Feedback Loops For AI/ML Devices Really Show?


AI/ML is being designed into an increasing number of chips and systems these days, but predicting how they will behave once they're in the field is, at best, a good guess. Typically, verification, validation, and testing of systems is done before devices reach the market, with an increasing amount of in-field data analysis for systems where reliability is potentially mission- or safety-criti... » read more

Learning properties of ordered and disordered materials from multi-fidelity data


Source: Chen, C., Zuo, Y., Ye, W. et al. Learning properties of ordered and disordered materials from multi-fidelity data. Nat Comput Sci 1, 46–53 (2021). https://doi.org/10.1038/s43588-020-00002-x Abstract: "Predicting the properties of a material from the arrangement of its atoms is a fundamental goal in materials science. While machine learning has emerged in recent years as a n... » read more

Infrastructure Impacts Data Analytics


Semiconductor data analytics relies upon timely, error-free data from the manufacturing processes, but the IT infrastructure investment and engineering effort needed to deliver that data is, expensive, enormous, and still growing. The volume of data has ballooned at all points of data generation as equipment makers add more sensors into their tools, and as monitors are embedded into the chip... » read more

The Cyber-Industrial Revolution


Semiconductors won't save the world, but they certainly will help. In fact, it's arguable whether any significant progress will be made on such issues as global warming or future medical breakthroughs without the aid of ICs. After decades of struggling just to get chips to work at each new process node, the semiconductor industry is moving into a new phase. Processing is now almost ubiquitou... » read more

Using Verification Data More Effectively


Verification is producing so much data from complex designs that engineering teams need to decide what to keep, how long to keep it, and what they can learn from that data for future projects. Files range from hundreds of megabytes to hundreds of gigabytes, depending on the type of verification task, but the real value may not be obvious unless AI/machine learning algorithms are applied to a... » read more

What’s WAT? An Overview Of WAT/PCM Data


Wafer acceptance testing (WAT) also known as process control monitoring (PCM) data is data generated by the fab at the end of manufacturing and generally made available to the fabless customer for every wafer. The data will typically have between forty and one hundred tests, each test having a result for each site (or “drop-in”) on the wafer. The sites are located so that the fab can monito... » read more

New Data Format Boosts Test Analytics


Demand for more and better data for test is driving a major standards effort, paving the way for one of most significant changes in data formats in years. There is good reason for this shift. Data from device testing is becoming a critical element in test program decisions regarding limits and flows. This is true for everything from automotive and medical components to complex, heterogeneous... » read more

Moving Data And Computing Closer Together


The speed of processors has increased to the point where they often are no longer the performance bottleneck for many systems. It's now about data access. Moving data around costs both time and power, and developers are looking for ways to reduce the distances that data has to move. That means bringing data and memory nearer to each other. “Hard drives didn't have enough data flow to cr... » read more

Monitoring IC Abnormalities Before Failures


The rising complexities of semiconductor processes and design are driving an increasing use of on-chip monitors to support data analytics from an IC’s birth through its end of life — no matter how long that projected lifespan. Engineers have long used on-chip circuitry to assist with manufacturing test, silicon debug and failure analysis. Providing visibility and controllability of inter... » read more

← Older posts Newer posts →