EDA’s Role Grows For Preventing And Identifying Failures


The front end of design is becoming more tightly integrated with the back end of manufacturing, driven by the rising cost and impact of failures in advanced chips and critical applications. Ironically, the starting point for this shift is failure analysis (FA), which typically happens when a device fails to yield, or worse, when it is returned due to some problem. In production, that leads t... » read more

Chiplet Planning Kicks Into High Gear


Chiplets are beginning to impact chip design, even though they are not yet mainstream and no commercial marketplace exists for this kind of hardened IP. There are ongoing discussions about silicon lifecycle management, the best way to characterize and connect these devices, and how to deal with such issues as uneven aging and thermal mismatch. In addition, a big effort is underway to improve... » read more

From Known Good Die To Known Good System With UCIe IP


Multi-die systems are made up of several specialized functional dies (or chiplets) that are assembled in the same package to create the complete system. Multi-die systems have recently emerged as a solution to overcome the slowing down of Moore’s law by providing a path to scaling functionality in the packaged chip in a way that is manufacturable with good yield. Additionally, multi-die sy... » read more

Pinpointing Timing Delays Can Improve Chip Reliability


Growing pressure to improve IC reliability in safety- and mission-critical applications is fueling demand for custom automated test pattern generation (ATPG) to detect small timing delays, and for chip telemetry circuits that can assess timing margin over a chip's lifetime. Knowing the timing margin in signal paths has become an essential component in that reliability. Timing relationships a... » read more

Optimizing Scan Test For Complex ICs


As chips become more heterogeneous with more integrated functionality, testing them presents increasing challenges — particularly for high-speed system-on-chip (SoC) designs with limited test pin availability. In addition, the complexity of emerging packages like 3D and chiplets necessitates comprehensive new solutions that can provide faster results at multiple stages in the silicon lifec... » read more

Test Challenges Mount As Demands For Reliability Increase


An emphasis of improving semiconductor quality is beginning to spread well beyond just data centers and automotive applications, where ICs play a role in mission- and safety-critical applications. But this focus on improved reliability is ratcheting up pressure throughout the test community, from lab to fab and into the field, in products where transistor density continues to grow — and wh... » read more

Hunting For Hardware-Related Errors In Data Centers


The semiconductor industry is urgently pursuing design, monitoring, and testing strategies to help identify and eliminate hardware defects that can cause catastrophic errors. Corrupt execution errors, also known as silent data errors, cannot be fully isolated at test — even with system-level testing — because they occur only under specific conditions. To sort out the environmental condit... » read more

Testability Analysis Based On Ever-Evolving Technology


The complexity of system-on-chip (SoC) designs continues to grow, so the corresponding design-for-test (DFT) logic required for manufacturing has become more advanced. Design teams are challenged by high gate counts and an array of internally developed and third-party IP integrated into their designs. Understanding if one can create high-quality manufacturing tests for these complex designs mus... » read more

Packetized Scan Test


Bus-based packetized scan data decouples test delivery and core-level DFT requirements so core-level compression configuration can be defined completely independently of chip I/O limitations. Grouping cores for concurrent testing is selected programmatically, not hard-wired. This concept dramatically reduces the DFT planning and implementation effort. The Siemens solution for packetized deli... » read more

Next Steps For Improving Yield


Chipmakers are ramping new tools and methodologies to achieve sufficient yield faster, despite smaller device dimensions, a growing number of systematic defects, immense data volumes, and massive competitive pressure. Whether a 3nm process is ramping, or a 28nm process is being tuned, the focus is on reducing defectivity. The challenge is to rapidly identify indicators that can improve yield... » read more

← Older posts Newer posts →