FinFET Based Designs: Power Analysis Considerations


Design teams working on mobile, computing, networking and other low power, high performance IPs and SoCs are migrating to FinFET-based technologies. However the benefits from their smaller sizes and the ability to deliver consistent performance at ultra-low sub-1V nominal supply voltage levels is outweighed by the worsening of power noise and reliability. As mentioned in an earlier blog on Powe... » read more

How Much Will That Chip Cost?


From the most advanced process nodes to the trailing edge of design there is talk about the skyrocketing cost of developing increasingly complex SoCs. At 16/14nm it’s a combination of multi-patterning, multiple power domains and factoring in physical and proximity effects. At older nodes, it’s the shift to more sophisticated versions of the processes and new tools to work within those proce... » read more

ESD Signoff No Longer A “Nice to Have” In FinFET Design Era


As the semiconductor industry transitions to finFETs, reliability challenges are increasing. ESD designers are challenged with new issues that would require significant rethinking and redesign of their existing ESD protection strategy. With significant complexity embedded in the silicon, failure analysis and silicon debug is challenging and time consuming even to the ESD experts. Technology ... » read more

Full-Chip IC ESD Integrity


ESD or electro-static discharge induced field failures for integrated circuits (IC) has always been an challenge. Literature survey indicates that as high as 35% of total chip field failures are ESD related. Several trends in the IC industry are exacerbating the impact of ESD induced failures: (a) move towards advanced processing technologies with shrinking geometries, (b) push for higher... » read more

Paving The Way To 16/14nm


The move to the next stop on the Moore’s Law road map isn’t getting any less expensive or easier, but it is becoming more predictable. Tools and programs are being expanded to address physical effects such as electrostatic discharge (ESD), electromigration and thermal effects from increased current density. Any or all of these three checklist items can affect the reliability of a chip. A... » read more

The Week In Review: July 12


By Ed Sperling Cadence rolled a new version of its layout suite of tools for electrically aware designs, allowing design teams to check on electrical issues while the layout is being done. The company says this can reduce circuit design time by up to 30%, in addition to optimizing for performance and area. Cadence also announced a deal with Global Unichip, which successfully taped out a 20nm ... » read more

Bringing Electrical Info To Design’s Forefront


By Ann Steffora Mutschler To reflect the impact on transistors of smaller process nodes and the electrical effects that occur as a result, a shift is underway where the electrical analysis and verification that used to be done when the layout was complete is moving earlier in the design process. The analysis includes parasitic extraction of interconnect and device parasitics, electromigrati... » read more

Dangerous Electricity


Electricity to the modern age is as indispensible as air, but too much can be a bad thing for automotive and aerospace applications—especially when it is in the form of electrostatic discharge (ESD). As chips advance to 28nm, 20nm and 16nm, the design window for electrostatic discharge is shrinking for a number of reasons, explained Norman Chang is vice president and senior product strategis... » read more

Verifying Your Intent


Design rule checking (DRC), layout versus schematic (LVS) and electrical rule checking (ERC) are physical verification techniques that are mandatory today to check a design and its structures before manufacturing. Checking electrical characteristics of a design is one thing. Verifying power intent is quite another. And the overlap of the two is an intriguing concept. Case in point: Checking fo... » read more

Good Times For Analog Designers


By Ann Steffora Mutschler For a number of technological reasons, analog/mixed-signal design and low-power design are converging, and with that comes both challenges and opportunities. As far as challenges go, process variations at 14nm, 20nm and even 28nm have increased significantly to include DFM impacts such as layout-delay effects. On the digital side, those process changes affect... » read more

← Older posts Newer posts →