中文 English

Simulation-Based Fault Analysis for Resilient System-On-Chip Design


Abstract: "Enhancing the reliability of the system is important for recent system-on-chip (SoC) designs. This importance has led to studies on fault diagnosis and tolerance. Fault-injection (FI) techniques are widely used to measure the fault-tolerance capabilities of resilient systems. FI techniques suffer from limitations in relation to environmental conditions and system features. Moreover,... » read more

Dynamic Fault Injection Into Digital Twins Of Safety-Critical Systems


In this work we present a technology for dynamically introducing fault structures into digital twins without the need to change the virtual prototype model. The injection is done at the beginning of a simulation by dynamically rewiring the involved netlists. During the simulation on a real-time platform, faults can be activated or deactivated triggered by sequences, statistical effects or by ev... » read more

Three Steps To ISO 26262 Fault Campaign Closure


The complexity of automotive ICs continues to grow exponentially, challenging even the most veteran teams to deliver innovative products to market while simultaneously ensuring safety through the operational life of the product. This is the purpose of safety verification. Its primary objective is to understand whether the safety architecture sufficiently prevents random failures from violati... » read more

Mitigating The Effects Of Radiation On Advanced Automotive ICs


The safety considerations in an automotive IC application have similarities to what is seen in other safety critical industries, such as the avionics, space, and industrial sectors. ISO 26262 is the state-of-the-art safety standard guiding the safety activities and work products required for electronics deployed in an automotive system. ISO 26262 requires that a design be protected from the eff... » read more

The Growing Impact Of Portable Stimulus


It has been a year since Accellera's Portable Test and Stimulus Specification became a standard. Semiconductor Engineering sat down to discuss the impact it has had, and the future direction of it, with Dave Kelf, chief marketing officer for Breker Verification Systems; Larry Melling, product management director for Cadence; Tom Fitzpatrick, strategic verification architect for Mentor, a Siemen... » read more

Is Your Functional Safety An Afterthought?


Imagine the air bag in your car not inflating during a collision or deploying without a crash during driving! These are two of the failure modes associated with the air bag in your car, none of which you as a driver have any control over. The severity of both these failures is of course very high, but which one would you rate as a higher hazard? The probability of getting into an accident is lo... » read more

Reducing Your Fault Campaign Workload Through Effective Safety Analysis


As the automotive industry strives for greater levels of autonomous functionality, ICs will become integral in virtually every vehicle system. Companies previously embedded in non-safety critical markets are transitioning current technologies to the growing and rapidly evolving automotive market. These companies will face the unfamiliar challenges associated with having to enhance their IP to s... » read more

Safety Critical Design In Automotive


Shiv Chonnad, hardware engineer at Synopsys, examines how to design chips for safety-critical applications such as automotive and ensure they work as planned and in accordance with ISO 26262 and the various ASIL levels. This includes how to find faults at both a chip and a system level. https://youtu.be/3dL4ZuSe5Ls » read more

Finding And Fixing ML’s Flaws


OneSpin CEO Raik Brinkmann sat down with Semiconductor Engineering to discuss how to make machine learning more robust, predictable and consistent, and new ways to identify and fix problems that may crop up as these systems are deployed. What follows are excerpts of that conversation. SE: How do we make sure devices developed with machine learning behave as they're supposed to, and how do we... » read more

Is Verification Falling Behind?


Every year that [getkc id="74" comment="Moore's Law"] is in effect means that the [getkc id="10" kc_name="verification"] task gets larger and more complex. At one extreme, verification complexity increases at the square of design complexity, but that assumes that every state in the design is usable and unique. On the other hand, verification has not had the luxury that comes with design reuse b... » read more