Photonic Debond: Scalability And Advancements


Advanced packaging technology has continuously evolved over the past 10-20 years to become a major driving force in improving integrated circuit (IC) performance. This improvement in IC performance is assisted by the ability to place specialized components near each other for shorter interconnects in the IC packages. Temporary bond and debond (TB/DB) is an enabling technique for this work. TB/D... » read more

Mastering FOWLP And 2.5D Design Is Easier Than You Think


IC packaging has come into its own, where once traditional packaging was a “necessary evil,” today’s packaging can add significant value. There is an increase in functional density and flexibility by providing a platform for heterogeneous design assembly. Where designs implemented in an SoC can become too large to yield satisfactorily and too difficult to implement on one process node, pa... » read more

Improving Redistribution Layers for Fan-out Packages And SiPs


Redistribution layers (RDLs) are used throughout advanced packaging schemes today including fan-out packages, fan-out chip on substrate approaches, fan-out package-on-package, silicon photonics, and 2.5D/3D integrated approaches. The industry is embracing a variety of fan-out packages especially because they deliver design flexibility, very small footprint, and cost-effective electrical connect... » read more

Fan-Out Packaging Gets Competitive


Fan-out wafer-level packaging (FOWLP) is a key enabler in the industry shift from transistor scaling to system scaling and integration. The design fans out the chip interconnects through a redistribution layer instead of a substrate. Compared to flip-chip ball grid array (FCBGA) or wire bonds, it creates lower thermal resistance, a slimmer package, and potentially lower costs. Yet, if the h... » read more

Study Of Bondable Laser Release Material Using 355nm Energy To Facilitate RDL-First And Die-First Fan-Out Wafer-Level Packaging (FOWLP)


A thorough evaluation on selecting a bondable laser release material for redistribution layer (RDL)-first and die-first fan-out wafer-level packaging (FOWLP) is presented in this article. Four laser release materials were identified based on their absorption coefficient at 355 nm. In addition, all four of these materials possess thermal stability above 350 °C and pull-off adhesion on a Ti/Cu l... » read more

Chiplet-Based Advanced Packaging Technology from 3D/TSV to FOWLP/FHE


T. Fukushima, "Chiplet-Based Advanced Packaging Technology from 3D/TSV to FOWLP/FHE," 2021 Symposium on VLSI Circuits, 2021, pp. 1-2, doi: 10.23919/VLSICircuits52068.2021.9492335. Abstract: "More recently, "chiplets" are expected for further scaling the performance of LSI systems. However, system integration with the chiplets is not a new methodology. The basic concept dates back well over ... » read more

What Does It Take To Build A Successful Multi-Chip Module Factory?


When it comes to multi-chip module (MCM) manufacturing, fan-out wafer-level and fan-out panel-level packaging have received a lot of coverage recently. Every week, it seems like there is an announcement about “Company XYZ” moving their products into the fan-out wafer-level packaging (FOWLP) or fan-out panel-level packaging (FOPLP) space. But these moves come with challenges that didn’t ex... » read more

New RDL-First PoP Fan-Out Wafer-Level Package Process With Chip-to-Wafer Bonding Technology


Fan-Out Wafer-Level Interposer Package-on Package (PoP) design has many advantages for mobile applications such as low power consumption, short signal path, small form factor, and heterogeneous integration for multifunctions. In addition, it can be applied in various package platforms, including PoP, System-in-Package (SiP), and Chip Scale Package (CSP). These advantages come from advanced inte... » read more

Adaptive Shot Technology To Address Severe Lithography Challenges For Advanced FOPLP


Fan-out wafer level packaging (FOWLP) is a popular new packaging technology that allows the user to increase I/O in a smaller IC size than fan-in wafer level packaging. Market drivers such as 5G, IoT, mobile and AI will all use this technology. According to Yole Développement’s analysis, the fan-out packaging market size will increase to $3 billion in 2022 from $2.44 hundred million in 2014,... » read more

The Race To Much More Advanced Packaging


Momentum is building for copper hybrid bonding, a technology that could pave the way toward next-generation 2.5D and 3D packages. Foundries, equipment vendors, R&D organizations and others are developing copper hybrid bonding, which is a process that stacks and bonds dies using copper-to-copper interconnects in advanced packages. Still in R&D, hybrid bonding for packaging provides mo... » read more

← Older posts