Manufacturing Bits: Aug. 19


28nm brain chips DARPA-funded researchers have developed a 28nm chip that mimics the brain. The low-power chip is inspired by the neuronal structure of the brain. Designed by researchers at IBM under DARPA’s Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program, the chip consists of 5.4 billion transistors. Built on Samsung’s 28nm foundry process, the chip has ... » read more

Plotting IBM Micro’s Future


It’s been a wild ride for IBM’s Microelectronics Group. Neither IBM, nor the other parties involved, have made any public comments about the recent events concerning IBM Micro. Much of the drama has played out in the media. Based on those reports, here’s a rough outline of the events. Not long ago, IBM put its loss-ridden chip unit on the block to shore up the company’s bottom lin... » read more

System Bits: July 22


All graphene is not the same Widely touted as the most electrically conductive material ever studied, researchers at the University of Pennsylvania now understand that all graphene is not the same. With so few atoms comprising the entirety of the material, the arrangement of each one has an impact on its overall function. The team has used an advanced microscope to study the relationship be... » read more

Power/Performance Bits: June 24


Solar-cell efficiency in one step Rice University scientists have created a single-step process for producing highly efficient materials that let the maximum amount of sunlight reach a solar cell. The Rice lab of chemist Andrew Barron found a simple way to etch nanoscale spikes into silicon that allows more than 99 percent of sunlight to reach the cells’ active elements, where it can be t... » read more

System Bits: June 10


Graphene for dummies EPFL researchers have developed a “how-to” manual for making the most efficient optical graphene circuits possible that facilitates and accelerates technological development in this future field. Graphene holds great promise as the basis for new chips that are faster, better-performing and more compact. For example, graphene makes it possible to design systems that ... » read more

Manufacturing Bits: May 27


Chip printing process Fraunhofer Institute for Manufacturing Technology and Advanced Materials has developed a novel way to make systems using electronic components, such as resistors, transistors and capacitors. Researchers use simple printers and a robot-assisted production line. The components and other devices made from the technology could be used in various applications, such as digit... » read more

System Bits: May 27


Making sheets of grapheme more easily Graphene’s promise as a material for new kinds of electronic devices, among other uses, has led researchers around the world to study the material in search of new applications but one of the biggest limitations to wider use of the strong, lightweight, highly conductive material has been the hurdle of fabrication on an industrial scale. Initial work w... » read more

Manufacturing Bits: May 20


Brain chips Pennsylvania State University has developed a technology that could enable futuristic biochips, namely those that mimic the human brain. In the lab, Penn State combined a thin film of vanadium dioxide (VO2) on a titanium dioxide substrate to create an oscillating switch. VO2 is an exotic material that exhibits semiconductor-to-metal transitions at 68 °C. In the R&D stage fo... » read more

System Bits: May 6


Nonlinear optical resonance The drive to develop ultrasmall and ultrafast electronic devices using a single atomic layer of semiconductors, such as transition metal dichalcogenides, has received a significant boost. Researchers with Berkeley Lab have recorded the first observations of a strong nonlinear optical resonance along the edges of a single layer of molybdenum disulfide. The existence ... » read more

Manufacturing Bits: May 6


Litho beam startup A startup has developed a new beam technology for advanced lithography applications. The company, called Digibeam, has demonstrated the ability to shoot a particle beam through a slow wave RF structure to create a train of compressed beam packets for high-throughput lithography. “Synchronized with high-speed deflection, the core technology enables shot rates well into t... » read more

← Older posts Newer posts →